Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Reprogram ; 25(4): 139-141, 2023 08.
Article in English | MEDLINE | ID: mdl-37590007

ABSTRACT

In the era of stem cell research and regenerative medicine, understanding the regulatory networks that drive cellular reprogramming is fundamental. The study entitled "Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes" published in Stem Cell Reports sheds light on the remarkable versatility of Ascl1, a transcription factor known for its pivotal role in neurogenesis. By comparing regulatomes across multiple cell lineages, the authors have elucidated the potential of Ascl1 to facilitate the conversion of non-neural cells into various lineages beyond its canonical neural fate, suggesting its potential as a master regulator for lineage reprogramming. These observations challenge our current understanding of cell fate determination and open exciting avenues for regenerative medicine.


Subject(s)
Cellular Reprogramming , Neurogenesis , Cell Differentiation , Cell Lineage , Regenerative Medicine
2.
Cell Reprogram ; 24(5): 212-222, 2022 10.
Article in English | MEDLINE | ID: mdl-36219715

ABSTRACT

Last June, the stem cell community came together to celebrate the 20th anniversary of the International Society for Stem Cell Research (ISSCR), one of the leading organizations in the field. The hybrid event mixed a varied program filled with plenary talks, concurrent track sessions, poster presentations, exhibit booths, and plenty of opportunities to enhance stem cell research through bonding between academia and industry. This report highlights the Plenary sessions, with the main topics discussed by each speaker. All the impressive research showcased during the meeting is genuine proof of the great advancements the field has witnessed during these last 20 years, and the more to come.


Subject(s)
Stem Cell Research , Congresses as Topic
3.
BMC Biol ; 20(1): 6, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996451

ABSTRACT

BACKGROUND: The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS: We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS: Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.


Subject(s)
Actins , Chromatin , Actins/metabolism , Cell Differentiation , Chromatin/metabolism , Cytoskeleton/metabolism , Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Vimentin/metabolism
4.
PLoS One ; 16(7): e0254447, 2021.
Article in English | MEDLINE | ID: mdl-34242346

ABSTRACT

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-ß and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


Subject(s)
Proto-Oncogene Proteins c-akt , Sumoylation , Animals , Embryonic Stem Cells/metabolism , Ubiquitin/metabolism
5.
Biochem Biophys Res Commun ; 473(1): 194-199, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27012206

ABSTRACT

Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells.


Subject(s)
Gene Expression Regulation, Enzymologic , Pluripotent Stem Cells/cytology , Protein-Arginine N-Methyltransferases/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Down-Regulation , Fibroblasts/metabolism , Homeodomain Proteins/metabolism , Mice , NIH 3T3 Cells , Nanog Homeobox Protein , Neurons/cytology , Octamer Transcription Factor-3/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...