Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901952

ABSTRACT

Mucopolysaccharidosis I-Hurler (MPS I-H) is caused by the loss of α-L-iduronidase, a lysosomal enzyme that degrades glycosaminoglycans. Current therapies cannot treat many MPS I-H manifestations. In this study, triamterene, an FDA-approved, antihypertensive diuretic, was found to suppress translation termination at a nonsense mutation associated with MPS I-H. Triamterene rescued enough α-L-iduronidase function to normalize glycosaminoglycan storage in cell and animal models. This new function of triamterene operates through premature termination codon (PTC) dependent mechanisms that are unaffected by epithelial sodium channel activity, the target of triamterene's diuretic function. Triamterene represents a potential non-invasive treatment for MPS I-H patients carrying a PTC.


Subject(s)
Mucopolysaccharidosis I , Animals , Mucopolysaccharidosis I/genetics , Iduronidase , Triamterene , Codon, Nonsense , Diuretics , Glycosaminoglycans/metabolism
2.
Dis Model Mech ; 13(8)2020 08 27.
Article in English | MEDLINE | ID: mdl-32737261

ABSTRACT

Nonsense-mediated mRNA decay (NMD) targets mRNAs that contain a premature termination codon (PTC) for degradation, preventing their translation. By altering the expression of PTC-containing mRNAs, NMD modulates the inheritance pattern and severity of genetic diseases. NMD also limits the efficiency of suppressing translation termination at PTCs, an emerging therapeutic approach to treat genetic diseases caused by in-frame PTCs (nonsense mutations). Inhibiting NMD may help rescue partial levels of protein expression. However, it is unclear whether long-term, global NMD attenuation is safe. We hypothesize that a degree of NMD inhibition can be safely tolerated after completion of prenatal development. To test this hypothesis, we generated a novel transgenic mouse that expresses an inducible, dominant-negative form of human UPF1 (dnUPF1) to inhibit NMD in mouse tissues by different degrees, allowing us to examine the effects of global NMD inhibition in vivo A thorough characterization of these mice indicated that expressing dnUPF1 at levels that promote relatively moderate to strong NMD inhibition in most tissues for a 1-month period produced modest immunological and bone alterations. In contrast, 1 month of dnUPF1 expression to promote more modest NMD inhibition in most tissues did not produce any discernable defects, indicating that moderate global NMD attenuation is generally well tolerated in non-neurological somatic tissues. Importantly, a modest level of NMD inhibition that produced no overt abnormalities was able to significantly enhance in vivo PTC suppression. These results suggest that safe levels of NMD attenuation are likely achievable, and this can help rescue protein deficiencies resulting from PTCs.


Subject(s)
Codon, Nonsense , Genetic Diseases, Inborn/therapy , Genetic Therapy , Neurons/metabolism , Nonsense Mediated mRNA Decay , RNA Helicases/metabolism , Trans-Activators/metabolism , Age Factors , Animals , Female , Gene Expression Regulation, Developmental , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genotype , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Phenotype , RNA Helicases/genetics , Trans-Activators/genetics
3.
Arthritis Rheum ; 46(4): 934-45, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11953970

ABSTRACT

OBJECTIVE: Complement has been repeatedly implicated in the pathogenesis of rheumatoid arthritis (RA) based on studies showing reduced levels of native complement components and increased levels of complement metabolites in plasma, synovial fluid (SF), and synovial tissue (ST) of RA patients. However, there is limited information on local production and activation of key factors of the complement cascade in RA synovium and their potential modulation by novel anticytokine therapies. This study was undertaken to characterize the expression of complement proteins and receptors in RA SF and ST. METHODS: Using in situ hybridization, immunohistochemistry, and Western blot techniques, we assessed the presence of complement proteins C3, factor B (FB), and C5b-9, as well as the expression of complement receptors C3aR and C5aR in rheumatoid synovium. C3 and FB levels in SF were determined by enzyme-linked immunosorbent assay. Functional assessment was performed by examining the effects of soluble tumor necrosis factor receptor (sTNFR) p55 gene transfer in the SCID mouse model of RA. RESULTS: Complement proteins and receptors could be localized in all RA synovial specimens, whereas in osteoarthritis (OA) synovium, only a few, single cells expressed complement proteins and receptors. No differences were noted in the concentration of C3 between RA and OA in SF; however, FB levels were markedly reduced in RA versus OA SF. In RA synovium, in contrast to OA synovium, local expression of complement factor and complement receptor messenger RNA was found throughout the various ST compartments, suggesting that activation of the complement cascade occurs in all parts of the rheumatoid synovium. Moreover, C5aR expression was up-regulated following overexpression of sTNFR p55 by adenovirus-based gene transfer. CONCLUSION: In summary, local complement production and activation may play an important role in RA, and specific modulation and inhibition of local complement production could be an attractive therapeutic target for RA.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Complement System Proteins/genetics , Membrane Proteins , Synovial Membrane/physiopathology , Aged , Animals , Antigens, CD/genetics , Arthritis, Rheumatoid/immunology , Blotting, Western , Cells, Cultured , Complement Activation , Complement C3/genetics , Complement Factor B/genetics , Complement Membrane Attack Complex/genetics , Female , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression/immunology , Humans , In Situ Hybridization , Male , Mice , Mice, SCID , Middle Aged , RNA, Messenger/analysis , Receptor, Anaphylatoxin C5a , Receptors, Complement/genetics , Synovial Membrane/cytology , Synovial Membrane/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...