Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 87(4): 79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811575

ABSTRACT

Hedgehog signaling is involved in regulation of ovarian function in Drosophila, but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or theca (TC) cells of small (1-5 mm) antral follicles by in situ hybridization and of larger (5-17 mm) antral follicles by real-time RT-PCR from ovaries of cyclic cows genetically selected (Twinner) or not selected (control) for twin ovulations. Expression of IHH mRNA was localized to GC and cumulus cells, whereas PTCH1 mRNA was greater in TC than in GC. Estrogen-active (E-A; follicular fluid concentration of estradiol > progesterone) versus estrogen-inactive follicles had a greater abundance of mRNA for IHH in GC and PTCH1 in TC. Abundance of IHH mRNA in GC was not affected by cow genotype, whereas TC PTCH1 mRNA was less in large E-A follicles of Twinners than in controls. In vitro, estradiol and wingless-type (WNT) 3A increased IHH mRNA in IGF1-treated GC. IGF1 and BMP4 treatments decreased PTCH1 mRNA in small TC. Estradiol and LH increased PTCH1 mRNA in IGF1-treated TC from large and small follicles, respectively. In summary, functional status of ovarian follicles was associated with differences in hedgehog signaling in GC and TC. We hypothesize that as follicles grow and develop, increased free IGF1 may suppress expression of IHH mRNA by GC and PTCH1 mRNA by TC, and these effects are regulated in a paracrine way by estradiol and other intra- and extragonadal factors.


Subject(s)
Cattle , Hedgehog Proteins/physiology , Ovarian Follicle/cytology , Ovulation/genetics , Pregnancy, Multiple/genetics , Somatomedins/physiology , Animals , Cattle/genetics , Cattle/metabolism , Cattle/physiology , Cell Separation/veterinary , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Litter Size/genetics , Ovarian Follicle/metabolism , Ovarian Follicle/physiology , Parturition/genetics , Parturition/metabolism , Parturition/physiology , Patched Receptors , Pregnancy , Pregnancy, Multiple/metabolism , Pregnancy, Multiple/physiology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/physiology , Signal Transduction/genetics , Somatomedins/genetics , Somatomedins/metabolism , Tissue Distribution
2.
Mol Reprod Dev ; 73(7): 850-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16596627

ABSTRACT

To gain a better understanding of biochemical mechanisms of conceptus adhesion to the maternal endometrium in ruminant ungulates, the present study was performed to clarify roles of chemokines and extracellular matrix (ECM) components in the regulation of ovine blastocyst attachment to the endometrium. In addition to the chemokine, interferon-gamma inducible protein 10 kDa (IP-10, CXCL10), the chemokine receptor, CXCR3, also recognizes two other chemokines; monokine induced by IFN-gamma (MIG, CXCL9) and IFN-inducible T cell alpha chemoattractant (I-TAC, CXCL11). Similar to CXCL10, CXCL9, and CXCL11 were expressed in the uterus during the peri-implantation period, and CXCL9 mRNA expression was stimulated in endometrial explants from day 14 cyclic ewes by the addition of IFN-tau or IFN-gamma. Without ECM components, conceptus cell adhesion was low on day 14 of gestation and exhibited a 2.5-fold increase on day 17; adhesiveness on day 20 was 1/10 of that on day 14. Among various ECM components examined, trophoblast adhesion was greatest when fibronectin was used. Although day 14 conceptuses did not show much adhesive activity to fibronectin, day 17 trophoblast, and day 20 chorionic membrane exhibited 2.3-fold and 50-fold increase, respectively, which was enhanced by treatment with CXCL9 or CXCL10. These results indicate that through endometrial fibronectin and chemokines, ovine conceptus cells gain the ability to attach to the endometrium during pre-implantation period; however, elucidation of molecular mechanisms by which the conceptus acquires the adhesive ability during this time period awaits further investigation.


Subject(s)
Cell Adhesion , Chemokines, CXC/metabolism , Embryo Implantation , Endometrium/metabolism , Sheep/embryology , Trophoblasts/metabolism , Animals , Extracellular Matrix/metabolism , Female , Fibronectins/metabolism , Interferon Type I/pharmacology , Interferon-gamma/pharmacology , Pregnancy , Pregnancy Proteins/pharmacology , Receptors, CXCR3 , Receptors, Chemokine/metabolism
3.
Mol Reprod Dev ; 73(5): 559-67, 2006 May.
Article in English | MEDLINE | ID: mdl-16489630

ABSTRACT

Expression of ovine interferon-tau (oIFNtau), a factor essential for the process of maternal recognition of pregnancy in ruminant ungulates, is restricted to the trophoblast. However, the molecular mechanisms by which oIFNtau expression is restricted to the trophectoderm have not been fully elucidated. The objective of this study was to determine whether oIFNtau gene transcription could be regulated through Cdx2 expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Human choriocarcinoma JEG3 cells were co-transfected with an oIFNtau (-654 base pair, bp)-luciferase reporter (-654-oIFNtau-Luc) construct and several transcription factor expression plasmids. Compared to -654-oIFNtau-Luc alone, transcription of the -654-oIFNtau-Luc increased more than 30 times when this construct was co-transfected with Cdx2, Ets-2, and c-jun. The degree of transcription decreased to 1/4 levels when the upstream region was reduced to -551 bp, and became minimal with further deletions; this was confirmed with the use of the reporter constructs with mutated c-jun, Ets-2, and/or Cdx2 sites. In trophoblast unrelated NIH3T3 cells, which do not support IFNtau gene transcription, the oIFNtau-Luc transcription was enhanced approximately eightfold when the cells were co-transfected with the Cdx2/Ets-2 or Cdx2/Ets-2/c-jun expression plasmids. These findings were confirmed by gel-shift assays examining Cdx binding site on the oIFNtau gene's upstream region, by immunohistochemical study identifying the presence of Cdx2 in day 15 and 17 ovine conceptuses, and by Western blot detecting Cdx2 in day 17 conceptuses. Our results indicate that oIFNtau gene transcription is regulated by Cdx2, and suggest that Cdx2 could be a key molecule in determining oIFNtau gene transcription by the trophectoderm.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Interferon Type I/biosynthesis , Pregnancy Proteins/biosynthesis , Pregnancy/physiology , Trophoblasts/metabolism , Animals , Cell Line, Tumor , Female , Humans , Mice , NIH 3T3 Cells , Response Elements/physiology , Sheep , Transcription, Genetic/physiology , Trophoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...