Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451687

ABSTRACT

Declines in growing-season rainfall and increases in the frequency of heatwaves in southern Australia necessitate effective adaptation. The Sustainable Grazing Systems Pasture Model (SGS) was used to model the growth of three pasture species differing in root depth and root distribution under three different climate scenarios at two sites. The modelled metabolisable energy intake (in MJ) was used in a partial discounted net cash flow budget. Both the biophysical and economic modelling suggest that deep roots were advantageous in all climate scenarios at the long growing season site but provided no to little advantage at the short growing season site, likely due to the deep-rooted species drying out the soil profile earlier. In scenarios including climate change, the DM production of the deep-rooted species at the long growing season site averaged 386 kg/ha/year more than the more shallow-rooted species, while at the site with a shorter growing season it averaged 205 kg/ha/year less than the shallower-rooted species. The timing of the extra growth and pasture persistence strongly influenced the extent of the benefit. At the short growing season site other adaptation options such as summer dormancy will likely be necessary.

2.
Sci Total Environ ; 772: 145031, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33578140

ABSTRACT

BACKGROUND: Soil N mineralisation is the process by which organic N is converted into plant-available forms, while soil N immobilisation is the transformation of inorganic soil N into organic matter and microbial biomass, thereafter becoming bio-unavailable to plants. Mechanistic models can be used to explore the contribution of mineralised or immobilised N to pasture growth through simulation of plant, soil and environment interactions driven by management. PURPOSE: Our objectives were (1) to compare the performance of three agro-ecosystems models (APSIM, DayCent and DairyMod) in simulating soil N, pasture biomass and soil water using the same experimental data in three diverse environments (2), to determine if tactical application of N fertiliser in different seasons could be used to leverage seasonal trends in N mineralisation to influence pasture growth and (3), to explore the sensitivity of N mineralisation to changes in N fertilisation, cutting frequency and irrigation rate. KEY RESULTS: Despite considerable variation in model sophistication, no model consistently outperformed the other models with respect to simulation of soil N, shoot biomass or soil water. Differences in the accuracy of simulated soil NH4 and NO3 were greater between sites than between models and overall, all models simulated cumulative N2O well. While tactical N application had immediate effects on NO3, NH4, N mineralisation and pasture growth, no long-term relationship between mineralisation and pasture growth could be discerned. It was also shown that N mineralisation of DayCent was more sensitive to N fertiliser and cutting frequency compared with the other models. MAJOR CONCLUSIONS: Our results suggest that while superfluous N fertilisation generally stimulates immobilisation and a pulse of N2O emissions, subsequent effects through N mineralisation/immobilisation effects on pasture growth are variable. We suggest that further controlled environment soil incubation research may help separate successive and overlapping cycles of mineralisation and immobilisation that make it difficult to diagnose long-term implications for (and associations with) pasture growth.

3.
Plants (Basel) ; 9(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861611

ABSTRACT

Despite evidence that leaf temperatures can differ by several degrees from the air, crop simulation models are generally parameterised with air temperatures. Leaf energy budget is a process-based approach that can be used to link climate and physiological processes of plants, but this approach has rarely been used in crop modelling studies. In this study, a controlled environment experiment was used to validate the use of the leaf energy budget approach to calculate leaf temperature for perennial pasture species, and a modelling approach was developed utilising leaf temperature instead of air temperature to achieve a better representation of heat stress impacts on pasture growth in a biophysical model. The controlled environment experiment assessed the impact of two combined seven-day heat (control = 25/15 °C, day/night, moderate = 30/20 °C, day/night, and severe = 35/25 °C, day/night) and drought stresses (with seven-day recovery period between stress periods) on perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.). The leaf temperature of each species was modelled by using leaf energy budget equation and validated with measured data. All species showed limited homeothermy with the slope of 0.88 (P < 0.05) suggesting that pasture plants can buffer temperature variations in their growing environment. The DairyMod biophysical model was used to simulate photosynthesis during each treatment, using both air and leaf temperatures, and the patterns were compared with measured data using a response ratio (effect size compared to the well-watered control). The effect size of moderate heat and well-watered treatment was very similar to the measured values (~0.65) when simulated using T leaf, while T air overestimated the consecutive heat stress impacts (0.4 and 0). These results were used to test the heat stress recovery function (Tsum) of perennial ryegrass in DairyMod, finding that recovery after heat stress was well reproduced when parameterized with T sum = 20, while T sum = 50 simulated a long lag phase. Long term pasture growth rate simulations under irrigated conditions in south eastern Australia using leaf temperatures predicted 6-34% and 14-126% higher pasture growth rates, respectively at Ellinbank and Dookie, during late spring and summer months compared to the simulations using air temperatures. This study demonstrated that the simulation of consecutive heat and/or drought stress impacts on pasture production, using DairyMod, can be improved by using leaf temperatures instead of air temperature.

4.
Plants (Basel) ; 8(7)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315284

ABSTRACT

Heat and drought are two major limiting factors for perennial pasture production in south eastern Australia. Although previous studies have focused on the effects of prolonged heat and drought stresses on pasture growth and physiology, the effects of short term recurring combined heat and drought stresses and the recovery from them have not been studied in detail. A controlled environment experiment was conducted to investigate the growth and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.) plants exposed to two consecutive seven day heat (control = 25/15 °C day/night; moderate = 30/20 °C day/night and severe = 35/30 °C day/night) and/or drought stresses each followed by a seven day recovery period. During the first moderate and severe heat and drought treatments, maximum photochemical efficiency of photosystem II (Fv/Fm), cell membrane permeability and relative leaf water content decreased in chicory and tall fescue compared to perennial ryegrass and cocksfoot. However, during the second moderate heat and drought treatment, all species showed less reduction in the same parameters suggesting that these species acclimated to consecutive moderate heat and drought stresses. Chicory was the only species that was not affected by the second severe heat and drought stress while physiological parameters of all grass species were reduced closer to minimum values. Irrigation mitigated the negative effects of heat stress by cooling the canopies 1-3 °C below air temperatures with the most cooling observed in chicory. All the species exposed to moderate heat and drought were fully recovered and those exposed to severe heat and drought recovered partially at the end of the experiment. These findings suggest that chicory may be a potential species for areas subject to frequent heat and drought stress.

5.
J Sci Food Agric ; 99(7): 3451-3458, 2019 May.
Article in English | MEDLINE | ID: mdl-30609046

ABSTRACT

BACKGROUND: Supplementation of ruminant diets with wheat and corn grains influences ruminal fermentation. In vitro fermentation is a methodology that can be used to screen feeds for their potential to produce enteric methane. However, there is evidence that the diet of the donor cows could impact the results of in vitro analysis. This research investigated the in vitro fermentation of wheat and corn grain when incubated in ruminal fluid from cows fed different grain types and different forage-to-grain ratios. RESULTS: The type of grain fed to the donor cows, as well as forage-to-grain ratio, affected the outcome of fermentation of wheat and corn grain. Differences in methane production (MP) between grains were only observed when incubated with ruminal fluid adapted to each specific grain type. Increasing proportions of wheat but not of corn decreased in vitro MP in a linear manner compared with MP produced from forage only. CONCLUSIONS: Wheat grain has a greater in vitro antimethanogenic effect than corn. However, to detect the different fermentations between wheat and corn, grains should be incubated in ruminal fluid from cows adapted to that specific grain type. © 2019 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Methane/metabolism , Triticum/metabolism , Zea mays/metabolism , Animals , Diet/veterinary , Female , Fermentation , Methane/analysis , Rumen/metabolism , Silage/analysis , Triticum/chemistry , Zea mays/chemistry
6.
J Sci Food Agric ; 99(1): 109-116, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-29797341

ABSTRACT

BACKGROUND: There are several methods for estimating methane production (MP) from feedstuffs in vented in vitro systems. One method (A; 'gold standard') measures methane proportions in the incubation bottle's headspace (HS) and in the vented gas collected in gas bags. Four other methods (B, C, D and E) measure methane proportion in a single gas sample from the HS. Method B assumes the same methane proportion in the vented gas as in the HS, method C assumes constant methane to carbon dioxide ratio, method D has been developed based on empirical data, and method E assumes constant individual venting volumes. This study aimed to compare the MP predictions from these methods to that of the gold standard method under different incubation scenarios, to validate these methods based on their concordance with a gold-standard method. RESULTS: Methods C, D and E had greater concordance (0.85, 0.88 and 0.81), lower root-mean-square error (RMSE; 0.80, 0.72 and 0.85) and lower mean bias (0.20, 0.35, -0.35) with the gold standard than did method B (concordance 0.67, RMSE 1.49 and mean bias 1.26). Methods D and E were simpler to perform than method C, and method D was slightly more accurate than method E. CONCLUSION: Based on precision, accuracy and simplicity of implementation, it is recommended that, when method A cannot be used, methods D and E are preferred to estimate MP from vented in vitro systems. © 2018 Society of Chemical Industry.


Subject(s)
Chemistry Techniques, Analytical/methods , Methane/analysis , Rumen/metabolism , Animal Feed/analysis , Animals , Cattle , Fermentation , Methane/metabolism , Models, Biological , Rumen/chemistry
7.
Animals (Basel) ; 2(4): 540-58, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-26487163

ABSTRACT

A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq.) intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively), whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively). Enteric fermentation and nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity, particularly at the lower rainfall sites. Emissions per unit product of low input systems can be minimized by efficient utilization of pasture to maximize the annual turnoff of weaned calves and diluting resource input per unit product.

SELECTION OF CITATIONS
SEARCH DETAIL
...