Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phys ; 128(17)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33518796

ABSTRACT

Here we present a general algorithm for processing microcalorimeter data with special applicability to data with high photon count rates. Conventional optimal filtering, which has become ubiquitous in microcalorimeter data processing, suffers from its inability to recover overlapped pulses without sacrificing spectral resolution. The technique presented here was developed to address this particular shortcoming, and does so without imposing any assumptions beyond those made by the conventional technique. We demonstrate the algorithm's performance with a data set that approximately satisfies these assumptions, and which is representative of a wide range of microcalorimeter applications. We also apply the technique to a highly non-linear data set, examining the impact on performance in the limit that these assumptions break down.

2.
J Astron Telesc Instrum Syst ; 5(2): 021017, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33442556

ABSTRACT

Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be a flagship mission. One of Lynx's three instruments is an imaging spectrometer called the Lynx x-ray microcalorimeter (LXM), an x-ray microcalorimeter behind an x-ray optic with an angular resolution of 0.5 arc sec and ∼2 m2 of area at 1 keV. The LXM will provide unparalleled diagnostics of distant extended structures and, in particular, will allow the detailed study of the role of cosmic feedback in the evolution of the Universe. We discuss the baseline design of LXM and some parallel approaches for some of the key technologies. The baseline sensor technology uses transition-edge sensors, but we also consider an alternative approach using metallic magnetic calorimeters. We discuss the requirements for the instrument, the pixel layout, and the baseline readout design, which uses microwave superconducting quantum interference devices and high-electron mobility transistor amplifiers and the cryogenic cooling requirements and strategy for meeting these requirements. For each of these technologies, we discuss the current technology readiness level and our strategy for advancing them to be ready for flight. We also describe the current system design, including the block diagram, and our estimate for the mass, power, and data rate of the instrument.

3.
Article in English | MEDLINE | ID: mdl-32020916

ABSTRACT

To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.

4.
J Appl Phys ; 121(7)2017 Feb 21.
Article in English | MEDLINE | ID: mdl-31359885

ABSTRACT

We have measured the resistance R(T, I, B ext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a 4-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities ( α ≡ ∂ log R / ∂ log T | I and ß ≡ ∂ log R / ∂ log I | T ) of the TES resistance have been determined at each point. α and ß are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson "weak link" fringes.

SELECTION OF CITATIONS
SEARCH DETAIL
...