Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Sci Technol ; : 19322968241236771, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491800

ABSTRACT

BACKGROUND: Combining a continuous glucose monitor with an insulin delivery cannula (CGM-IS) could benefit clinical outcomes. We evaluated the feasibility of a single-needle insertion electrochemical investigational CGM-IS (Pacific Diabetes Technologies, Portland, Oregon) in type 1 diabetes adults. METHODS: Following 48 hours run-in using a Medtronic 780G in manual mode with a commercial insulin set, 12 participants commenced insulin delivery using the CGM-IS. A standardized test meal was eaten on the mornings of days 1 and 4. Venous samples were collected every 10 minutes one hour prior to and 15 minutes post-meal for four hours. CGM-IS glucose measurements were post-processed with a single capillary blood calibration during warm-up and benchmarked against YSI. A Dexcom G6 sensor was worn post-consent to study end. RESULTS: Mean absolute relative difference (MARD) for the CGM-IS glucose measurements was 9.2% (484 paired data points). Consensus error grid revealed 88.6% within zone A and 100% in A + B. Mean (SD) % bias was -3.5 (11.7) %. There were 35 paired YSI readings <100 mg/dL cutoff and 449 ≥100 mg/dL with 81.4% within ±15 mg/dL or ±15%, and 89.9% within ±20 mg/dL or ±20%. Two cannula occlusions required discontinuation of insulin delivery: one at 70 hours post insertion and another during the day 4 meal test. Mean (SD) Dexcom glucose measurements during run-in and between meal tests was respectively 161.3 ± 27.3 mg/dL versus 158.0 ± 25.6 mg/dL; P = .39 and corresponding mean total daily insulin delivered by the pump was 58.0 ± 25.4 Units versus 57.1 ± 28.8 Units; P = .47. CONCLUSIONS: Insulin delivery and glucose sensing with the investigational CGM-IS was feasible. Longer duration studies are needed.

2.
Antivir Chem Chemother ; 18(1): 35-48, 2007.
Article in English | MEDLINE | ID: mdl-17354650

ABSTRACT

The efficacy of BAY 57-1293, a novel non-nucleosidic inhibitor of herpes simplex virus 1 and 2 (HSV-1 and HSV-2), bovine herpesvirus and pseudorabies virus, was studied in the guinea pig model of genital herpes in comparison with the licensed drug valaciclovir (Valtrex). Early therapy with BAY 57-1293 almost completely suppressed the symptoms of acute HSV-2 infection, and reduced virus shedding and viral load in the sacral dorsal root ganglia by up to three orders of magnitude, resulting in decreased latency and a greatly diminished frequency of subsequent recurrent episodes. In contrast, valaciclovir showed only moderate effects in this set of experiments. When treatment was initiated late during the course of disease after symptoms were apparent, that is, a setting closer to most clinical situations, the efficacy of therapy with BAY 57-1293 was even more pronounced. Compared with valaciclovir, BAY 57-1293 halved the time necessary for complete healing. Moreover, the onset of action was fast, so that only very few animals developed new lesions after treatment commenced. Finally, in a study addressing the treatment of recurrent disease in animals whose primary infection had remained untreated BAY 57-1293 was efficient in suppressing the episodes. In summary, superior potency and efficacy of BAY 57-1293 over standard treatment with valaciclovir was demonstrated in relevant animal models of human genital herpes disease in terms of abrogating an HSV infection, reducing latency and the frequency of subsequent recurrences. Furthermore, BAY 57-1293 shortens the time to healing even if initiation of therapy is delayed.


Subject(s)
Antiviral Agents/pharmacology , DNA Helicases/antagonists & inhibitors , DNA Primase/antagonists & inhibitors , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Herpes Genitalis/drug therapy , Pyridines/pharmacology , Thiazoles/pharmacology , Animals , Antiviral Agents/therapeutic use , DNA, Viral/genetics , Enzyme Inhibitors/therapeutic use , Guinea Pigs , Herpesvirus 2, Human/genetics , Humans , Polymerase Chain Reaction , Pyridines/therapeutic use , Sulfonamides , Thiazoles/therapeutic use
3.
Nat Med ; 8(4): 392-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11927946

ABSTRACT

The vast majority of the world population is infected with at least one member of the human herpesvirus family. Herpes simplex virus (HSV) infections are the cause of cold sores and genital herpes as well as life-threatening or sight-impairing disease mainly in immunocompromized patients, pregnant women and newborns. Since the milestone development in the late 1970s of acyclovir (Zovirax), a nucleosidic inhibitor of the herpes DNA polymerase, no new non-nucleosidic anti-herpes drugs have been introduced. Here we report new inhibitors of the HSV helicase-primase with potent in vitro anti-herpes activity, a novel mechanism of action, a low resistance rate and superior efficacy against HSV in animal models. BAY 57-1293 (N-[5-(aminosulfonyl)-4-methyl-1,3-thiazol-2-yl]-N-methyl-2-[4-(2-pyridinyl)phenyl]acetamide), a well-tolerated member of this class of compounds, significantly reduces time to healing, prevents rebound of disease after cessation of treatment and, most importantly, reduces frequency and severity of recurrent disease. Thus, this class of drugs has significant potential for the treatment of HSV disease in humans, including those resistant to current medications.


Subject(s)
Antiviral Agents/therapeutic use , DNA Helicases/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Herpes Simplex/drug therapy , Pyridines/therapeutic use , Thiazoles/therapeutic use , Acyclovir/therapeutic use , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , DNA Primase , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Female , Guinea Pigs , Herpes Simplex/enzymology , Herpes Simplex/pathology , Humans , Infant, Newborn , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Pregnancy , Pyridines/chemistry , Pyridines/pharmacokinetics , Safety , Sulfonamides , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...