Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Hered ; 115(1): 72-85, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38015800

ABSTRACT

Characterizing the mechanisms influencing the distribution of genetic variation in aquatic species can be difficult due to the dynamic nature of hydrological landscapes. In North America's Central Highlands, a complex history of glacial dynamics, long-term isolation, and secondary contact have shaped genetic variation in aquatic species. Although the effects of glacial history have been demonstrated in many taxa, responses are often lineage- or species-specific and driven by organismal ecology. In this study, we reconstruct the evolutionary history of a freshwater mussel species complex using a suite of mitochondrial and nuclear loci to resolve taxonomic and demographic uncertainties. Our findings do not support Pleurobema rubrum as a valid species, which is proposed for listing as threatened under the U.S. Endangered Species Act. We synonymize P. rubrum under Pleurobema sintoxia-a common and widespread species found throughout the Mississippi River Basin. Further investigation of patterns of genetic variation in P. sintoxia identified a complex demographic history, including ancestral vicariance and secondary contact, within the Eastern Highlands. We hypothesize these patterns were shaped by ancestral vicariance driven by the formation of Lake Green and subsequent secondary contact after the last glacial maximum. Our inference aligns with demographic histories observed in other aquatic taxa in the region and mirrors patterns of genetic variation of a freshwater fish species (Erimystax dissimilis) confirmed to serve as a parasitic larval host for P. sintoxia. Our findings directly link species ecology to observed patterns of genetic variation and may have significant implications for future conservation and recovery actions of freshwater mussels.


Subject(s)
Bivalvia , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Endangered Species , Bivalvia/genetics , Lakes , Demography , Phylogeny , Genetic Variation
2.
J Pain ; 18(9): 1078-1086, 2017 09.
Article in English | MEDLINE | ID: mdl-28461253

ABSTRACT

This study tested the hypothesis that older adults would have a stronger response for substance P (facilitatory) but weaker response to ß-endorphin (inhibitory), in magnitude as well as time course. Eight younger and 9 older adults underwent 3 experimental sessions using well validated laboratory pain models: cold pressor task, contact heat pain, and a nonpainful control. Blood was collected through an indwelling catheter at baseline and 3, 15, 30, 45, and 60 minutes after stimuli administration. Older adults had higher baseline levels of both neuropeptides suggesting increased peripheral activity compared with younger adults. After the cold pressor task, older adults demonstrated a quick and strong release of substance P with dramatic recovery, whereas young adults maintained a constant low-grade response. Unlike substance P, ß-endorphin increased between 3 and 15 minutes for both groups with the upsurge substantially higher for older adults. After heat pain, younger adults had an immediate surge in circulating substance P and ß-endorphin that was more pronounced than among older adults. However, levels of substance P for younger adults slowly tapered whereas they continued to climb for the older adults through 30 minutes. ß-endorphin peaked at 30 minutes for both groups and returned to baseline. No changes were observed during the nonpainful control session. PERSPECTIVE: Older adults had higher baseline levels of substance P and ß-endorphin suggesting increased peripheral activity compared with younger adults. After pain evocation, older adults demonstrated a more intense early response for both neuropeptides suggesting peripheral mechanisms involved in the response to pain may change with age.


Subject(s)
Aging/blood , Pain/blood , Substance P/blood , beta-Endorphin/blood , Aged , Analysis of Variance , Biomarkers/blood , Cold Temperature , Female , Hot Temperature , Humans , Male , Pressure , Time Factors , Young Adult
3.
PLoS One ; 9(11): e112252, 2014.
Article in English | MEDLINE | ID: mdl-25411848

ABSTRACT

Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult.


Subject(s)
Animal Shells/growth & development , Bivalvia/growth & development , Animals , Bivalvia/physiology , Female , Fresh Water , Organ Size , Population Density , Population Growth , Stress, Physiological
4.
F1000Res ; 2: 158, 2013.
Article in English | MEDLINE | ID: mdl-24555075

ABSTRACT

The nociceptive withdrawal reflex is a protective mechanism to mediate interactions within a potentially dangerous environment. The reflex is formed by action-based sensory encoding during the early post-natal developmental period, and it is unknown if the protective motor function of the nociceptive withdrawal reflex in the human upper-limb is adaptable based on the configuration of the arm or if it can be modified by short-term practice of a similar or opposing motor action. In the present study, nociceptive withdrawal reflexes were evoked by a brief train of electrical stimuli applied to digit II, 1) in five different static arm positions and, 2) before and after motor practice that was opposite (EXT) or similar (FLEX) to the stereotyped withdrawal response, in 10 individuals. Withdrawal responses were quantified by the electromyography (EMG) reflex response in several upper limb muscles, and by the forces and moments recorded at the wrist. EMG onset latencies and response amplitudes were not significantly different across the arm positions or between the EXT and FLEX practice conditions, and the general direction of the withdrawal response was similar across arm positions. In addition, the force vectors were not different after practice in either the practice condition or between EXT and FLEX conditions. We conclude the withdrawal response is insensitive to changes in elbow or shoulder joint angles as well as remaining resistant to short-term adaptations from the practice of motor actions, resulting in a generalized limb withdrawal in each case. It is further hypothesized that the multisensory feedback is weighted differently in each arm position, but integrated to achieve a similar withdrawal response to safeguard against erroneous motor responses that could cause further harm. The results remain consistent with the concept that nociceptive withdrawal reflexes are shaped through long-term and not short-term action based sensory encoding.

5.
J Am Chem Soc ; 133(25): 9796-811, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21563763

ABSTRACT

In the literature, iron-oxo complexes have been isolated and their hydrogen atom transfer (HAT) reactions have been studied in detail. Iron-imido complexes have been isolated more recently, and the community needs experimental evaluations of the mechanism of HAT from late-metal imido species. We report a mechanistic study of HAT by an isolable iron(III) imido complex, L(Me)FeNAd (L(Me) = bulky ß-diketiminate ligand, 2,4-bis(2,6-diisopropylphenylimido)pentyl; Ad = 1-adamantyl). HAT is preceded by binding of tert-butylpyridine ((t)Bupy) to form a reactive four-coordinate intermediate L(Me)Fe(NAd)((t)Bupy), as shown by equilibrium and kinetic studies. In the HAT step, very large substrate H/D kinetic isotope effects around 100 are consistent with C-H bond cleavage. The elementary HAT rate constant is increased by electron-donating groups on the pyridine additive, and by a more polar medium. When combined with the faster rate of HAT from indene versus cyclohexadiene, this trend is consistent with H(+) transfer character in the HAT transition state. The increase in HAT rate in the presence of (t)Bupy may be explained by a combination of electronic (weaker Fe=N π-bonding) and thermodynamic (more exothermic HAT) effects. Most importantly, HAT by these imido complexes has a strong dependence on the size of the hydrocarbon substrate. This selectivity comes from steric hindrance by the spectator ligands, a strategy that has promise for controlling the regioselectivity of these C-H bond activation reactions.

6.
Inorg Chem ; 49(13): 6172-87, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20524625

ABSTRACT

Reaction of 1-adamantyl azide with iron(I) diketiminate precursors gives metastable but isolable imidoiron(III) complexes LFe=NAd (L = bulky beta-diketiminate ligand; Ad = 1-adamantyl). This paper addresses (1) the spectroscopic and structural characterization of the Fe=N multiple bond in these interesting three-coordinate iron imido complexes, and (2) the mechanism through which the imido complexes form. The iron(III) imido complexes have been examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and temperature-dependent magnetic susceptibility (SQUID), and structurally characterized by crystallography and/or extended X-ray absorption fine structure (EXAFS) measurements. These data show that the imido complexes have quartet ground states and short (1.68 +/- 0.01 A) iron-nitrogen bonds. The formation of the imido complexes proceeds through unobserved iron-N(3)R intermediates, which are indicated by QM/MM computations to be best described as iron(II) with an N(3)R radical anion. The radical character on the organoazide bends its NNN linkage to enable easy N(2) loss and imido complex formation. The product distribution between imidoiron(III) products and hexazene-bridged diiron(II) products is solvent-dependent, and the solvent dependence can be explained by coordination of certain solvents to the iron(I) precursor prior to interaction with the organoazide.


Subject(s)
Ferric Compounds/chemistry , Imides/chemistry , Organometallic Compounds/chemistry , Azides/chemistry , Electron Spin Resonance Spectroscopy , Ferric Compounds/chemical synthesis , Imides/chemical synthesis , Magnetic Resonance Spectroscopy , Magnetics , Models, Molecular , Organometallic Compounds/chemical synthesis , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , X-Ray Absorption Spectroscopy
7.
Chem Commun (Camb) ; (13): 1760-2, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19294287

ABSTRACT

The metastable iron(III) imido species LtBuFeNAd catalyzes transfer of the nitrene fragment NAd from an organic azide to isocyanides or CO, forming unsymmetrical carbodiimides or isocyanates.

8.
J Am Chem Soc ; 130(19): 6074-5, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18419120

ABSTRACT

This communication reports the first examples of transition metal complexes containing an RNNNNNNR 2- ligand. Addition of 1-azidoadamantane to the diiron(I) synthon LRFeNNFeL R (L R = HC[C(R)N(2,6- iPr 2C 6H 3)] 2; R = methyl, tert-butyl) leads to the diiron complexes L RFe(mu-eta2:eta2-AdN6Ad)FeLR, which are surprisingly thermally stable. Magnetic, Mössbauer, and crystallographic data are consistent with pairs of high-spin iron(II) ions antiferromagnetically coupled through a dianionic AdN6Ad 2- bridge.


Subject(s)
Adamantane/analogs & derivatives , Azides/chemistry , Ferrous Compounds/chemistry , Crystallography, X-Ray , Molecular Structure , Oxidation-Reduction , Spectroscopy, Mossbauer
11.
Inorg Chem ; 44(22): 7702-4, 2005 Oct 31.
Article in English | MEDLINE | ID: mdl-16241116

ABSTRACT

A three-coordinate diketiminate-nickel(I) complex with a carbonyl ligand has been characterized using EPR and IR spectroscopies and X-ray crystallography. The T geometry (bending from the sterically favored C(2)(v)() structure) contrasts with that of isosteric d(9) copper(II) complexes. DFT calculations on a truncated model reproduce experimental geometries, implying that the geometric differences are electronic in nature. Analysis of the charge distribution in the complexes shows that the geometry of the three-coordinate d(9) complexes is affected by differential charge donation of the ligands to the metal center.

12.
J Am Chem Soc ; 127(26): 9344-5, 2005 Jul 06.
Article in English | MEDLINE | ID: mdl-15984842

ABSTRACT

Bridging oxo species are important in the synthetic and biological chemistry of iron, and are found with iron oxidation states from +2 to +4. We report the first oxodiiron(II) complex that has been crystallographically characterized. It has been examined by NMR, IR, and Mössbauer spectroscopies as well as density-functional calculations.


Subject(s)
Iron Compounds/chemical synthesis , Oxygen/chemistry , Metalloproteins/chemistry , Metalloproteins/metabolism , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Infrared , Spectroscopy, Mossbauer
13.
Inorg Chem ; 43(10): 3306-21, 2004 May 17.
Article in English | MEDLINE | ID: mdl-15132641

ABSTRACT

The synthesis, structure, and reactivity of a series of low-coordinate Fe(II) diketiminate amido complexes are presented. Complexes L(R)FeNHAr (R = methyl, tert-butyl; Ar = para-tolyl, 2,6-xylyl, and 2,6-diisopropylphenyl) bind Lewis bases to give trigonal pyramidal and trigonal bipyramidal adducts. In the adducts, crystallographic and (1)H NMR evidence supports the existence of agostic interactions in solid and solution states. Complexes L(R)FeNHAr may be oxidized using AgOTf, and the products L(R)Fe(NHAr)(OTf) are characterized with (19)F NMR spectroscopy, UV/vis spectrophotometry, solution magnetic measurements, elemental analysis, and, in one case, X-ray crystallography. In the structures of the iron(III) complexes L(R)Fe(NHAr)(OTf) and L(R)Fe(OtBu)(OTf), the angles at nitrogen and oxygen result from steric effects and not pi-bonding. The reactions of the amido group of L(R)FeNHAr with weak acids (HCCPh and HOtBu) are consistent with a basic nitrogen atom, because the amido group is protonated by terminal alkynes and alcohols to give free H(2)NAr and three-coordinate acetylide and alkoxide complexes. The trends in complex stability give insight into the relative strength of bonds from three-coordinate iron to anionic C-, N-, and O-donor ligands.

14.
Inorg Chem ; 43(8): 2548-55, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15074972

ABSTRACT

Four platinum(II) cationic complexes were prepared with the mer-coordinating tridentate ligands 2,6-bis(N-pyrazolyl)pyridine (bpp) and 2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine (bdmpp): [Pt(bpp)Cl]Cl.H(2)O; [Pt(bdmpp)Cl]Cl.H(2)O; [Pt(bpp)(Ph)](PF(6)); [Pt(bdmpp)(Ph)](PF(6)). The complexes were characterized by (1)H NMR spectroscopy, elemental analysis, and mass spectrometry, and the structures of the bpp derivatives were determined by X-ray crystallography. [Pt(bpp)Cl]Cl.2H(2)O: monoclinic, P2(1)/n, a = 11.3218(5) A, b = 6.7716(3) A, c = 20.6501(6) A, beta = 105.883(2) degrees, V = 1522.73(11) A(3), Z = 4. The square planar cations stack in a head-to-tail fashion to form a linear chain structure with alternating Pt...Pt distances of 3.39 and 3.41 A. [Pt(bpp)(Ph)](PF(6)).CH(3)CN: triclinic, P, a = 8.3620(3) A, b = 10.7185(4) A, c = 13.4273(5) A, alpha = 96.057(1) degrees, beta = 104.175(1) degrees, gamma = 110.046(1) degrees, V = 1072.16(7) A(3), Z = 2. Cyclic voltammograms indicate all four complexes undergo irreversible reductions between -1.0 and -1.3 V vs Ag/AgCl (0.1 M TBAPF(6)/CH(3)CN), attributable to ligand- and/or metal-centered processes. By comparison to related 2,2':6',2' '-terpyridine complexes, the electrochemical and UV-visible absorption data are consistent with bpp being both a weaker sigma-donor and pi-acceptor than terpyridine. Solid samples of [Pt(bpp)(Ph)](PF(6)) at 77 K exhibit a remarkably intense, narrow emission centered at 655 nm, whereas the other three complexes exhibit only very weak emission.

15.
Inorg Chem ; 42(5): 1720-5, 2003 Mar 10.
Article in English | MEDLINE | ID: mdl-12611544

ABSTRACT

Nickel(II) chloride forms a complex with tetrahydrofuran, NiCl(2)(THF)(1.5), that can be used to prepare nickel chloride complexes of a bulky beta-diketiminate ligand L(Me). [L(Me)NiCl](2) and L(Me)NiCl(2)LiTHF(2), which have tetrahedral geometries in the solid state, are in equilibrium with three-coordinate L(Me)NiCl. Thermodynamic parameters for the equilibrium between [L(Me)NiCl](2) and L(Me)NiCl are DeltaH = 51(5) kJ/mol and DeltaS = 116(11) J/(mol.K). L(Me)NiCl forms a tetrahydrofuran complex with a binding constant of 1.2(2) M(-)(1) at 21 degrees C. The chloride complexes were used to generate a three-coordinate nickel(II)-amido complex. This amido complex, L(Me)NiN(SiMe(3))(2), is compared with L(Me)MN(SiMe(3))(2) (M = Mn, Fe, Co) (Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909-3916). Trends in the metrical parameters of the three-coordinate L(Me)M(II) amido compounds are similar to the trends in three-coordinate L(tBu)M(II) chloride compounds (Holland, P. L.; Cundari, T. R.; Perez, L. L.; Eckert, N. A.; Lachicotte, R. J. J. Am. Chem. Soc. 2002, 124, 14416-14424).

16.
J Am Chem Soc ; 124(48): 14416-24, 2002 Dec 04.
Article in English | MEDLINE | ID: mdl-12452717

ABSTRACT

Three-coordinate organometallic complexes are rare, especially with the prototypical methyl ligand. Using a hindered, rigid bidentate ligand (L), it is possible to create 12-electron methyliron(II) and 13-electron methylcobalt(II) complexes. These complexes are thermally stable, and (1)H NMR spectra suggest that the low coordination number is maintained in solution. Attempts to create the 14-electron LNiCH(3) led instead to the three-coordinate nickel(I) complex LNi(THF). Single crystals of LMCH(3) are isomorphous with the new three-coordinate chloride complexes LNiCl and LCoCl. Along with the recently reported LFeCl (Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Chem. Commun. 2001, 1542), these are the only examples of three-coordinate iron(II), cobalt(II), and nickel(II) complexes with terminal chloride ligands, enabling the systematic evaluation of the effect of coordination number and metal identity on M-Cl bond lengths. Electronic structure calculations predict the ground states of the trigonal complexes.

17.
J Am Chem Soc ; 124(12): 3012-25, 2002 Mar 27.
Article in English | MEDLINE | ID: mdl-11902893

ABSTRACT

Mössbauer spectra of [LFe(II)X](0) (L = beta-diketiminate; X = Cl(-), CH(3)(-), NHTol(-), NHtBu(-)), 1.X, were recorded between 4.2 and 200 K in applied magnetic fields up to 8.0 T. A spin Hamiltonian analysis of these data revealed a spin S = 2 system with uniaxial magnetization properties, arising from a quasi-degenerate M(S) = +/-2 doublet that is separated from the next magnetic sublevels by very large zero-field splittings (3/D/ > 150 cm(-1)). The ground levels give rise to positive magnetic hyperfine fields of unprecedented magnitudes, B(int) = +82, +78, +72, and +62 T for 1.CH(3), 1.NHTol, 1.NHtBu, and 1.Cl, respectively. Parallel-mode EPR measurements at X-band gave effective g values that are considerably larger than the spin-only value 8, namely g(eff) = 10.9 (1.Cl) and 11.4 (1.CH(3)), suggesting the presence of unquenched orbital angular momenta. A qualitative crystal field analysis of g(eff) shows that these momenta originate from spin-orbit coupling between energetically closely spaced yz and z(2) 3d-orbital states at iron and that the spin of the M(S) = +/-2 doublet is quantized along x, where x is along the Fe-X vector and z is normal to the molecular plane. A quantitative analysis of g(eff) provides the magnitude of the crystal field splitting of the lowest two orbitals, /epsilon(yz) - epsilon(2)(z)/ = 452 (1.Cl) and 135 cm(-1) (1.CH(3)). A determination of the sign of the crystal field splitting was attempted by analyzing the electric field gradient (EFG) at the (57)Fe nuclei, taking into account explicitly the influence of spin-orbit coupling on the valence term and ligand contributions. This analysis, however, led to ambiguous results for the sign of epsilon(yz) - epsilon(2)(z). The ambiguity was resolved by analyzing the splitting Delta of the M(S) = +/-2 doublet; Delta = 0.3 cm(-1) for 1.Cl and Delta = 0.03 cm(-)(1) for 1.CH(3). This approach showed that z(2) is the ground state in both complexes and that epsilon(yz) - epsilon(2)(z) approximately 3500 cm(-1) for 1.Cl and 6000 cm(-1) for 1.CH(3). The crystal field states and energies were compared with the results obtained from time-dependent density functional theory (TD-DFT). The isomer shifts and electric field gradients in 1.X exhibit a remarkably strong dependence on ligand X. The ligand contributions to the EFG, denoted W, were expressed by assigning ligand-specific parameters: W(X) to ligands X and W(N) to the diketiminate nitrogens. The additivity and transferability hypotheses underlying this model were confirmed by DFT calculations. The analysis of the EFG data for 1.X yields the ordering W(N(diketiminate)) < W(Cl) < W(N'HR), W(CH(3)) and indicates that the diketiminate nitrogens perturb the iron wave function to a considerably lesser extent than the monodentate nitrogen donors do. Finally, our study of these synthetic model complexes suggests an explanation for the unusual values for the electric hyperfine parameters of the iron sites in the Fe-Mo cofactor of nitrogenase in the M(N) state.


Subject(s)
Ferrous Compounds/chemistry , Electron Spin Resonance Spectroscopy , Ferrous Compounds/chemical synthesis , Models, Chemical , Quantum Theory , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...