Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 75(7): 1561-6, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18281016

ABSTRACT

Treatment regimen of poisonings by organophosphorus (OP) compounds usually includes oxime therapy. The treatment options in soman poisoning are very limited due to rapid aging of the inhibited acetylcholinesterase (AChE), when the enzyme species is considered as irreversibly inhibited and resistant towards reactivation by oximes. Hence, oxime treatment probably comes too late in realistic scenarios. As an alternative, protecting part of the enzyme by reversible inhibition prior to soman exposure has been proposed. One means of protecting against soman poisoning is the prophylactic use of certain reversible inhibitors (carbamates) of AChE. The question whether there is a possibility of an interaction between pre-treating carbamates and oximes at AChE arises. Therefore we studied the effects of the oximes obidoxime, HI 6 and MMB-4 on the rate of decarbamylation for physostigmine- and pyridostigmine-inhibited human erythrocyte AChE both in a dynamically working in vitro model and a static cuvette system. Our results show that HI 6 increased the rate of decarbamylation for both physostigmine- and pyridostigmine-inhibited enzyme in both systems, the observed effect by HI 6 increasing with higher doses. Obidoxime had a slightly accelerating effect on the pyridostigmine-inhibited enzyme. MMB-4 applied to pyridostigmine-inhibited AChE in the static system only showed no difference to the experiments made in absence of oxime. No oxime showed a tendency to retard the rate of decarbamylation.


Subject(s)
Acetylcholinesterase/metabolism , Carbamates/metabolism , Erythrocytes/drug effects , Erythrocytes/enzymology , Oximes/pharmacology , Humans
2.
Toxicology ; 246(2-3): 188-92, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18304715

ABSTRACT

The efficacy of oxime treatment in soman poisoning is limited due to rapid aging of inhibited acetylcholinesterase (AChE). Pre-treatment with carbamates was shown to improve antidotal treatment substantially. Recently, by using a dynamically working in vitro model with real-time determination of membrane-bound AChE activity, we were able to demonstrate that pre-inhibition of human erythrocyte AChE with pyridostigmine or physostigmine resulted in a markedly higher residual AChE activity after inhibition by soman or paraoxon than in the absence of reversible inhibitors. The purpose of the present study was to compare the effect of carbamate pre-treatment and soman challenge with human erythrocyte and muscle homogenate AChE. Both enzyme sources were immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. AChE activity was continuously analyzed in a flow-through detector. Pre-inhibition of AChE with pyridostigmine or physostigmine resulted in a concentration-dependent increase in carbamylation, residual activity after soman inhibition and fraction of decarbamylation AChE after discontinuation of the inhibitors without differences between human erythrocyte and muscle AChE. This data support the view that human erythrocyte AChE is an adequate surrogate marker for synaptic AChE in OP poisoning.


Subject(s)
Acetylcholinesterase/metabolism , Carbamates/pharmacology , Erythrocytes/drug effects , Muscle, Skeletal/drug effects , Soman/toxicity , Cholinesterase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation , Erythrocytes/enzymology , Humans , Kinetics , Muscle, Skeletal/enzymology , Physostigmine/pharmacology , Pyridostigmine Bromide/pharmacology
3.
Biochem Pharmacol ; 75(3): 698-703, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17977518

ABSTRACT

The purpose of these experiments was to compare oxime-induced reactivation rate constants of acetylcholinesterase from different human tissue sources inhibited by organophosphorus compounds. To this end, preliminary testing was necessary to generate a stable system both for working with erythrocytes and musculature. We established a dynamically working in vitro model with a fixed enzyme source in a bioreactor that was perfused with acetylthiocholine, Ellman's reagent and any agent of interest (e.g. nerve agents, oximes) and analyzed in a common HPLC flow-through detector. The enzyme reactor was composed of a particle filter (Millex-GS, 0.22 microm) containing a thin layer of membrane-bound acetylcholinesterase and was kept at constant temperature in a water bath. At constant flow the height of absorbance was directly proportional to the enzyme activity. To start with, we applied this system to human red cell membranes and then adapted the system to acetylcholinesterase of muscle tissue. Homogenate (Ultra-Turrax and Potter-Elvehjem homogenizer) of human muscle tissue (intercostal musculature) was applied to the same particle filter and perfused in a slightly modified way, as done with human red cell membranes. We detected no decrease of acetylcholinesterase activity within 2.5h and we reproducibly determined reactivation rate constants for reactivation with obidoxime (10 microM) or HI 6 (30 microM) of sarin-inhibited human muscle acetylcholinesterase (0.142+/-0.004 min(-1) and 0.166+/-0.008 min(-1), respectively). The reactivation rate constants of erythrocyte and muscular acetylcholinesterase differed only slightly, highlighting erythrocyte acetylcholinesterase as a proper surrogate marker.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Erythrocytes/enzymology , Muscles/enzymology , Obidoxime Chloride/pharmacology , Paraoxon/pharmacology , Sarin/pharmacology , Humans , Perfusion
4.
Toxicology ; 233(1-3): 23-30, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-16949190

ABSTRACT

Antidotes against chemical warfare agents are "orphan drugs" given that these poisonings are rare. Therefore, they are of limited interest to the pharmaceutical industry. For this reason, and recognizing the increasing threat of terrorist or asymmetrical use of chemical warfare agents, the responsibility for research into medical countermeasures against these weapons is of primary interest to armies. Accordingly, the research activities of the Bundeswehr Institute of Pharmacology and Toxicology are dedicated to improving diagnosis, prophylaxis and therapy of individuals who are exposed to a chemical agent. Here, antidote development and testing are a high priority in the research program, particularly with respect to organophosphorus (OP) nerve agents and sulphur mustard. The Institute has been coordinating research activities undertaken in house and in collaboration with external researchers. The research program aims to develop primarily in vitro models to minimize the sacrifice of animals, using strategies, which involve human material early in antidote testing. An animal model using isolated mouse diaphragm demonstrated the correlation between AChE activity and neuromuscular function. A similar relationship was found between erythrocyte AChE and neuromuscular function in patients with acute OP pesticide poisoning. In vitro rate constants of the various reactions that are involved in enzyme inhibition and reactivation using human material were used for prediction of what would happen in vivo. This prediction could be confirmed in a patient with acute OP pesticide poisoning. Finally, computer models are being established to estimate the therapeutic effect of an antidote in various human poisoning scenarios. This approach is necessary to compensate for the lack of human clinical pharmacodynamic studies that are usually required for drug regulatory approval, given the obvious ethical issues preventing human volunteer studies with these agents.


Subject(s)
Antidotes , Biomedical Research/methods , Chemical Warfare Agents/poisoning , Chemical Warfare/prevention & control , Drug Industry/trends , Organophosphate Poisoning , Animals , Antidotes/administration & dosage , Antidotes/pharmacology , Antidotes/therapeutic use , Biomedical Research/trends , Humans
5.
Toxicology ; 233(1-3): 180-6, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17097792

ABSTRACT

The treatment options in soman poisoning are very limited due to rapid aging of the inhibited acetylcholinesterase, which makes the enzyme essentially intractable. Hence, oxime treatment probably comes too late in realistic scenarios. As an alternative, protecting part of the enzyme by reversible inhibition prior to soman exposure has been proposed. This strategy was successfully tested in animal experiments, but its efficacy still awaits complete understanding. In particular, it is unclear whether survival is improved by a higher residual activity of acetylcholinesterase during the acute phase, when the reversible and irreversible inhibitors are present together. In previous experiments with carbamate pre-treatment and paraoxon challenge we noticed an increased residual activity of erythrocyte acetylcholinesterase compared to non-pre-treatment. This result was encouraging to also test for comparable effects when using soman. Immobilized human erythrocytes were continuously perfused for real-time measurement of acetylcholinesterase activity by a modified Ellman method using 0.45mM acetylthiocholine. After having established the inhibition rate constant of soman, we tested the prophylactic potential of physostigmine, pyridostigmine and huperzine A. Pre-treatment with the reversible inhibitors inhibited the enzyme by 20-95%. Additional perfusion with 10nM soman for 30min resulted in a residual activity of 1-5%, at low and high pre-inhibition, respectively. The residual activity was markedly higher than in the absence of reversibly blocking agents (0.1%). After discontinuation of soman and the reversible inhibitors, enzyme activity recovered up to 30% following pre-inhibition by 50%. The experimental data agreed with computer simulations when feeding the kinetic-based model with the established rate constants. The results with soman essentially agreed with those obtained previously with paraoxon.


Subject(s)
Acetylcholinesterase/metabolism , Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Sesquiterpenes/pharmacology , Soman/toxicity , Alkaloids , Cholinesterase Reactivators/pharmacology , Erythrocytes/enzymology , Humans , In Vitro Techniques , Time Factors
6.
Biochem Pharmacol ; 72(3): 344-57, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16780806

ABSTRACT

In organophosphate poisoning, the underlying mechanism of the therapeutic efficacy of carbamate prophylaxis, which was successfully tested in animal experiments, still awaits complete understanding. In particular, it is unclear whether survival is improved by increased acetylcholinesterase activity during the acute phase, when both carbamate and organophosphate are present. This question should be solved experimentally by means of a dynamically working in vitro model. Immobilized human erythrocytes were continuously perfused while acetylcholinesterase activity was monitored in real-time by a modified Ellman method. The concentrations of reversible inhibitors and of paraoxon were varied to assess the influence of both components on the enzyme activity under steady-state conditions. Physostigmine, pyridostigmine and huperzine A were tested for their prophylactic potential. Upon pretreatment with these reversible inhibitors the enzyme was inhibited by 20-90%. Additional perfusion with 1 microM paraoxon for 30 min resulted in a residual activity of 1-4%, at low and high pre-inhibition, respectively. The residual activity was significantly higher than in the absence of reversibly blocking agents (0.3%). After discontinuing paraoxon, the activity increased even in the presence of the reversible blockers. Stopping the reversibly blocking agents resulted in 10-35% recovery of the enzyme activity, depending on the degree of pre-inhibition. The experimental results agreed with computer simulations upon feeding with the essential reaction rate constants, showing that physostigmine was somewhat superior to pyridostigmine in enhancing residual activity in the presence of 1 microM paraoxon for 30 min. The model predicts that inhibitors with a faster dissociation rate, e.g. huperzine A, may be superior in case of a 'hit-and-run' poison such as soman.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Erythrocytes/drug effects , Organophosphorus Compounds/pharmacology , Algorithms , Alkaloids , Carbamates/pharmacology , Cholinesterase Reactivators/pharmacology , Dose-Response Relationship, Drug , Erythrocytes/enzymology , Humans , Kinetics , Paraoxon/pharmacology , Physostigmine/pharmacology , Pyridostigmine Bromide/pharmacology , Sesquiterpenes/pharmacology , Time Factors
7.
Biochem Pharmacol ; 72(3): 358-65, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16725113

ABSTRACT

Quantitative predictions of the course of acetylcholinesterase (AChE) activity, following interference of inhibitors and reactivators, are usually obscured by the time-dependent changes of all reaction partners. To mimic these dynamics we developed an in vitro model. Immobilized human erythrocyte ghosts in a bioreactor were continuously perfused while AChE activity was monitored by a modified Ellman method. The perfusion system consisted of two HPLC pumps with integrated quaternary low-pressure gradient formers that were programmed by a computer using commercial HPLC software. The combined eluates passed a particle filter (Millex-GS, 0.22 microm) containing a thin layer of erythrocytes that was immersed in a temperature-controlled water bath. The effluent passed a flow cell in a UV-vis detector, the signal of which was digitized, written to disc and calculated with curve fitting programs. AChE activity decreased by 3.4% within 2.5 h. The day-to-day variation of the freshly prepared bioreactor using the same enzyme source was +/-3.3%. Residual activity of 0.2% marked the limit of quantification. Following perfusion with paraoxon, pseudo first-order rate constants of inhibition were established that did not differ from results obtained in conventional assays. The same holds true for reactivation with obidoxime. The set-up presented allows freely programmable time-dependent changes of up to eight solvents to mimic pharmacokinetic profiles without accumulation of products. Due to some hysteresis in the system, reaction half-lives should be >3 min and concentration changes in critical compounds should exceed half-lives of 5 min. Otherwise, the system offers much flexibility and operates with high precision.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Erythrocyte Membrane/drug effects , Chromogenic Compounds/analysis , Computer Systems , Dithionitrobenzoic Acid/pharmacology , Enzyme Stability , Equipment Design , Erythrocyte Membrane/enzymology , Humans , Obidoxime Chloride/pharmacology , Paraoxon/pharmacology , Perfusion/instrumentation , Perfusion/methods , Reproducibility of Results , Spectrophotometry/instrumentation , Spectrophotometry/methods , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...