Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Natl Cancer Inst ; 114(4): 579-591, 2022 04 11.
Article in English | MEDLINE | ID: mdl-34893874

ABSTRACT

BACKGROUND: N-Myc downstream regulated gene 1 (NDRG1) suppresses metastasis in many human malignancies, including breast cancer, yet has been associated with worse survival in patients with inflammatory breast cancer. The role of NDRG1 in the pathobiology of aggressive breast cancers remains elusive. METHODS: To study the role of NDRG1 in tumor growth and brain metastasis in vivo, we transplanted cells into cleared mammary fat pads or injected them in tail veins of SCID/Beige mice (n = 7-10 per group). NDRG1 protein expression in patient breast tumors (n = 216) was assessed by immunohistochemical staining. Kaplan-Meier method with 2-sided log-rank test was used to analyze the associations between NDRG1 and time-to-event outcomes. A multivariable Cox regression model was used to determine independent prognostic factors. All statistical tests were 2-sided. RESULTS: We generated new sublines that exhibited a distinct propensity to metastasize to the brain. NDRG1-high-expressing cells produced more prevalent brain metastases (100% vs 44.4% for NDRG1-low sublines, P = .01, Fisher's exact test), greater tumor burden, and reduced survival in mice. In aggressive breast cancer cell lines, silencing NDRG1 led to reduced migration, invasion, and tumor-initiating cell subpopulations. In xenograft models, depleting NDRG1 inhibited primary tumor growth and brain metastasis. In patient breast tumors, NDRG1 was associated with aggressiveness: NDRG1-high expression was also associated with shorter overall survival (hazard ratio [HR] = 2.27, 95% confidence interval [95% CI] = 1.20 to 4.29, P = .009) and breast cancer-specific survival (HR = 2.19, 95% CI = 1.07 to 4.48, P = .03). Multivariable analysis showed NDRG1 to be an independent predictor of overall survival (HR = 2.17, 95% CI = 1.10 to 4.30, P = .03) and breast cancer-specific survival rates (HR = 2.27, 95% CI = 1.05 to 4.92, P = .04). CONCLUSIONS: We demonstrated that NDRG1 drives tumor progression and brain metastasis in aggressive breast cancers and that NDRG1-high expression correlates with worse clinical outcomes, suggesting that NDRG1 may serve as a therapeutic target and prognostic biomarker in aggressive breast cancers.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, SCID , Prognosis
2.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34060472

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive tumor with limited treatment options and poor prognosis. We applied the in vivo phage display technology to isolate peptides homing to the immunosuppressive cellular microenvironment of TNBC as a strategy for non-malignant target discovery. We identified a cyclic peptide (CSSTRESAC) that specifically binds to a vitamin D receptor, protein disulfide-isomerase A3 (PDIA3) expressed on the cell surface of tumor-associated macrophages (TAM), and targets breast cancer in syngeneic TNBC, non-TNBC xenograft, and transgenic mouse models. Systemic administration of CSSTRESAC to TNBC-bearing mice shifted the cytokine profile toward an antitumor immune response and delayed tumor growth. Moreover, CSSTRESAC enabled ligand-directed theranostic delivery to tumors and a mathematical model confirmed our experimental findings. Finally, in silico analysis showed PDIA3-expressing TAM in TNBC patients. This work uncovers a functional interplay between a cell surface vitamin D receptor in TAM and antitumor immune response that could be therapeutically exploited.


Subject(s)
Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Protein Disulfide-Isomerases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Vitamin D-Binding Protein/metabolism , Animals , Cell Line, Tumor , Enzyme Activation , Female , Gene Expression Regulation, Neoplastic , Humans , Ligands , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Protein Disulfide-Isomerases/genetics , Signal Transduction , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Vitamin D-Binding Protein/genetics , Xenograft Model Antitumor Assays
3.
PLoS One ; 15(4): e0231953, 2020.
Article in English | MEDLINE | ID: mdl-32353087

ABSTRACT

The original algorithm that classified triple-negative breast cancer (TNBC) into six subtypes has recently been revised. The revised algorithm (TNBCtype-IM) classifies TNBC into five subtypes and a modifier based on immunological (IM) signatures. The molecular signature may differ between cancer cells in vitro and their respective tumor xenografts. We identified cell lines with concordant molecular subtypes regardless of classification algorithm or analysis of cells in vitro or in vivo, to establish a panel of clinically relevant molecularly stable TNBC models for translational research. Gene expression data were used to classify TNBC cell lines using the original and the revised algorithms. Tumor xenografts were established from 17 cell lines and subjected to gene expression profiling with the original 2188-gene algorithm TNBCtype and the revised 101-gene algorithm TNBCtype-IM. A total of six cell lines (SUM149PT (BL2), HCC1806 (BL2), SUM149PT (BL2), BT549 (M), MDA-MB-453 (LAR), and HCC2157 (BL1)) maintained their subtype classification between in vitro and tumor xenograft analyses across both algorithms. For TNBC molecular classification-guided translational research, we recommend using these TNBC cell lines with stable molecular subtypes.


Subject(s)
Translational Research, Biomedical , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Mice
4.
J Pathol ; 251(1): 63-73, 2020 05.
Article in English | MEDLINE | ID: mdl-32129471

ABSTRACT

The immune microenvironment in inflammatory breast cancer (IBC) is poorly characterised, and molecular and cellular pathways that control accumulation of various immune cells in IBC tissues remain largely unknown. Here, we discovered a novel pathway linking the expression of the tetraspanin protein CD151 in tumour cells with increased accumulation of macrophages in cancerous tissues. It is notable that elevated expression of CD151 and a higher number of tumour-infiltrating macrophages correlated with better patient responses to chemotherapy. Accordingly, CD151-expressing IBC xenografts were characterised by the increased infiltration of macrophages. In vitro migration experiments demonstrated that CD151 stimulates the chemoattractive potential of IBC cells for monocytes via mechanisms involving midkine (a heparin-binding growth factor), integrin α6ß1, and production of extracellular vesicles (EVs). Profiling of chemokines secreted by IBC cells demonstrated that CD151 increases production of midkine. Purified midkine specifically stimulated migration of monocytes, but not other immune cells. Further experiments demonstrated that the chemoattractive potential of IBC-derived EVs is blocked by anti-midkine antibodies. These results demonstrate for the first time that changes in the expression of a tetraspanin protein by tumour cells can affect the formation of the immune microenvironment by modulating recruitment of effector cells to cancerous tissues. Therefore, a CD151-midkine pathway can be considered as a novel target for controlled changes of the immune landscape in IBC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Inflammatory Breast Neoplasms/pathology , Macrophages/pathology , Tetraspanin 24/metabolism , Tumor Microenvironment/physiology , Cell Line, Tumor , Chemokines/metabolism , Humans , Inflammatory Breast Neoplasms/metabolism , Macrophages/metabolism , Midkine/metabolism , Tetraspanin 24/immunology
5.
Cancer Res ; 80(6): 1304-1315, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31941699

ABSTRACT

Metastasis is the major cause of death in patients with cancer; with no therapeutic cure, treatments remain largely palliative. As such, new targets and therapeutic strategies are urgently required. Here, we show that bone morphogenetic protein-4 (BMP4) blocks metastasis in animal models of breast cancer and predicts improved survival in patients. In preclinical models of spontaneous metastasis, BMP4 acted as an autocrine mediator to modulate a range of known metastasis-regulating genes, including Smad7, via activation of canonical BMP-SMAD signaling. Restored BMP4 expression or therapeutically administered BMP4 protein, blocked metastasis and increased survival by sensitizing cancer cells to anoikis, thereby reducing the number of circulating tumor cells. Gene silencing of Bmp4 or its downstream mediator Smad7, reversed this phenotype. Administration of recombinant BMP4 markedly reduced spontaneous metastasis to lung and bone. Elevated levels of BMP4 and SMAD7 were prognostic for improved recurrence-free survival and overall survival in patients with breast cancer, indicating the importance of canonical BMP4 signaling in the suppression of metastasis and highlighting new avenues for therapy against metastatic disease. SIGNIFICANCE: Targeting the BMP4-SMAD7 signaling axis presents a novel therapeutic strategy to combat metastatic breast cancer, a disease that has had no reduction in patient mortality over 20 years. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/6/1304/F1.large.jpg.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Bone Neoplasms/genetics , Breast Neoplasms/pathology , Smad7 Protein/metabolism , Animals , Autocrine Communication , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/therapeutic use , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cell Line, Tumor/transplantation , Datasets as Topic , Disease Models, Animal , Disease-Free Survival , Down-Regulation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Animal/pathology , Mastectomy , Middle Aged , Neoplasm Grading , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Prognosis , Recombinant Proteins/therapeutic use , Signal Transduction/genetics , Smad4 Protein/metabolism , Smad7 Protein/genetics , Xenograft Model Antitumor Assays
6.
Oncogene ; 38(12): 2135-2150, 2019 03.
Article in English | MEDLINE | ID: mdl-30459358

ABSTRACT

Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, currently lacks effective targeted therapy options. Eicosapentaenoic acid (EPA), an omega-3 fatty acid and constituent of fish oil, is a common supplement with anti-inflammatory properties. Although it is not a mainstream treatment, several preclinical studies have demonstrated that EPA exerts anti-tumor activity in breast cancer. However, against solid tumors, EPA as a monotherapy is clinically ineffective; thus, we sought to develop a novel targeted drug combination to bolster its therapeutic action against TNBC. Using a high-throughput functional siRNA screen, we identified Ephrin type-A receptor 2 (EPHA2), an oncogenic cell-surface receptor tyrosine kinase, as a therapeutic target that sensitizes TNBC cells to EPA. EPHA2 expression was uniquely elevated in TNBC cell lines and patient tumors. In independent functional expression studies in TNBC models, EPHA2 gene-silencing combined with EPA significantly reduced cell growth and enhanced apoptosis compared with monotherapies, both in vitro and in vivo. EPHA2-specific inhibitors similarly enhanced the therapeutic action of EPA. Finally, we identified that therapy-mediated apoptosis was attributed to a lethal increase in cancer cell membrane polarity due to ABCA1 inhibition and subsequent dysregulation of cholesterol homeostasis. This study provides new molecular and preclinical evidence to support a clinical evaluation of EPA combined with EPHA2 inhibition in patients with TNBC.


Subject(s)
Cholesterol/metabolism , Eicosapentaenoic Acid/pharmacology , Receptor, EphA2/antagonists & inhibitors , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , ATP Binding Cassette Transporter 1/metabolism , Animals , Apoptosis/drug effects , Biological Transport/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Interactions , Eicosapentaenoic Acid/therapeutic use , Female , Humans , Mice , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays
7.
PLoS One ; 13(5): e0195932, 2018.
Article in English | MEDLINE | ID: mdl-29768500

ABSTRACT

Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented. Although the current multimodality treatment regime of anthracycline- and taxane-based neoadjuvant therapy, surgery, and radiotherapy has improved the outcome of patients with triple-negative IBC, overall survival continues to be worse than in patients with non-inflammatory locally advanced breast cancer. Translation of new therapies into the clinics to successfully treat IBC has been poor, in part because of the lack of in vitro preclinical models that can accurately predict the response of the original tumor to therapy. We report the generation of a preclinical IBC patient-derived xenograft (PDX)-derived ex vivo (PDXEx) model and show that it closely replicates the tissue architecture of the original PDX tumor harvested from mice. The gene expression profile of our IBC PDXEx model had a high degree of correlation to that of the original tumor. This suggests that the process of generating the PDXEx model did not significantly alter the molecular signature of the original tumor. We demonstrate a high degree of similarity in drug response profile between a PDX mouse model and our PDXEx model generated from the same original PDX tumor tissue and treated with the same panel of drugs, indicating that our PDXEx model had high predictive value in identifying effective tumor-specific therapies. Finally, we used our PDXEx model as a platform for a robotic-based high-throughput drug screen of a 386-drug anti-cancer compound library. The top candidates identified from this drug screen all demonstrated greater therapeutic efficacy than the standard-of-care drugs used in the clinic to treat triple-negative IBC, doxorubicin and paclitaxel. Our PDXEx model is simple, and we are confident that it can be incorporated into a PDX mouse system for use as a first-pass screening platform. This will permit the identification of effective tumor-specific therapies with high predictive value in a resource-, time-, and cost-efficient manner.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Inflammatory Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Female , Gene Expression Profiling , Humans , Inflammatory Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured
8.
Neoplasia ; 20(4): 387-400, 2018 04.
Article in English | MEDLINE | ID: mdl-29539586

ABSTRACT

Most cancer patients with solid tumors who succumb to their illness die of metastatic disease. While early detection and improved treatment have led to reduced mortality, even for those with metastatic cancer, some patients still respond poorly to treatment. Understanding the mechanisms of metastasis is important to improve prognostication, to stratify patients for treatment, and to identify new targets for therapy. We have shown previously that expression of nephronectin (NPNT) is correlated with metastatic propensity in breast cancer cell lines. In the present study, we provide a comprehensive analysis of the expression pattern and distribution of NPNT in breast cancer tissue from 842 patients by immunohistochemical staining of tissue microarrays from a historic cohort. Several patterns of NPNT staining were observed. An association between granular cytoplasmic staining (in <10% of tumor cells) and poor prognosis was found. We suggest that granular cytoplasmic staining may represent NPNT-positive exosomes. We found that NPNT promotes adhesion and anchorage-independent growth via its integrin-binding and enhancer motifs and that enforced expression in breast tumor cells promotes their colonization of the lungs. We propose that NPNT may be a novel prognostic marker in a subgroup of breast cancer patients.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Extracellular Matrix Proteins/metabolism , Integrins/metabolism , Neoplasm Metastasis/pathology , Aged , Animals , Biomarkers, Tumor/metabolism , Cell Line , Cytoplasm/metabolism , Exosomes/metabolism , Female , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Prognosis
9.
Oncotarget ; 8(40): 67904-67917, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978083

ABSTRACT

Inflammatory breast cancer (IBC) is the most lethal and aggressive type of breast cancer, with a strong proclivity to metastasize, and IBC-specific targeted therapies have not yet been developed. Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in IBC. However, the mechanism behind the therapeutic effect of EGFR targeted therapy is not well defined. Here, we report that EGFR regulates the IBC cell population that expresses cancer stem-like cell (CSC) markers through COX-2, a key mediator of inflammation whose expression correlates with worse outcome in IBC. The COX-2 pathway promoted IBC cell migration and invasion and the CSC marker-bearing population in vitro, and the inhibition of this pathway reduced IBC tumor growth in vivo. Mechanistically, we identified Nodal, a member of the TGFß superfamily, as a potential driver of COX-2-regulated invasive capacity and the CSC phenotype of IBC cells. Our data indicate that the EGFR pathway regulates the expression of COX-2, which in turn regulates the expression of Nodal and the activation of Nodal signaling. Together, our findings demonstrate a novel connection between the EGFR/COX-2/Nodal signaling axis and CSC regulation in IBC, which has potential implications for new combination approaches with EGFR targeted therapy for patients with IBC.

11.
Breast Cancer Res Treat ; 164(1): 57-67, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28417335

ABSTRACT

PURPOSE: As clinical studies have correlated RANK expression levels with survival in breast cancer, and that RANK signaling is dependent on its cognate ligand RANKL, we hypothesized that dual protein expression further stratifies the poor outcome in TNBC. METHODS: RANK mRNA and protein expression was evaluated in TNBC using genomic databases, cell lines and in a tissue microarray of curated primary tumor samples derived from 87 patients with TNBC. RANK expression was evaluated either by Mann-Whitney U test on log-normalized gene expression data or by Student's t test on FACS data. Analysis of RANK and RANKL immunostaining was calculated by H-score, and correlations to clinical factors performed using χ 2 or Fisher's exact test. Associations with RFS and OS were assessed using univariate and multivariate Cox proportional hazard models. Survival estimates were generated using the Kaplan-Meier method. RESULTS: In three distinct datasets spanning 684 samples, RANK mRNA expression was higher in primary tumors derived from TNBC patients than from those with other molecular subtypes (P < 0.01). Cell surface-localized RANK protein was consistently higher in TNBC cell lines (P = 0.037). In clinical samples, TNBC patients that expressed both RANK and RANKL proteins had significantly worse RFS (P = 0.0032) and OS (P = 0.004) than patients with RANK-positive, RANKL-negative tumors. RANKL was an independent, poor prognostic factor for RFS (P = 0.04) and OS (P = 0.01) in multivariate analysis in samples that expressed both RANK and RANKL. CONCLUSIONS: RANK and RANKL co-expression is associated with poor RFS and OS in patients with TNBC.


Subject(s)
Prognosis , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Triple Negative Breast Neoplasms/genetics , Adult , Aged , Biomarkers, Tumor/genetics , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Middle Aged , Triple Negative Breast Neoplasms/classification , Triple Negative Breast Neoplasms/pathology
12.
Proc Natl Acad Sci U S A ; 113(45): 12780-12785, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791177

ABSTRACT

Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.

13.
Oncotarget ; 6(15): 12890-908, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25973541

ABSTRACT

Significant research has been conducted to better understand the extensive, heterogeneous molecular features of triple-negative breast cancer (TNBC). We reviewed published TNBC molecular classifications to identify major groupings that have potential for clinical trial development. With the ultimate aim to streamline translational medicine, we linked these categories of TNBC according to their gene-expression signatures, biological function, and clinical outcome. To this end, we define five potential clinically actionable groupings of TNBC: 1) basal-like TNBC with DNA-repair deficiency or growth factor pathways; 2) mesenchymal-like TNBC with epithelial-to-mesenchymal transition and cancer stem cell features; 3) immune-associated TNBC; 4) luminal/apocrine TNBC with androgen-receptor overexpression; and 5) HER2-enriched TNBC. For each defined subtype, we highlight the major biological pathways and discuss potential targeted therapies in TNBC that might abrogate disease progression. However, many of these potential targets need clinical validation by clinical trials. We have yet to know how we can enrich the targets by molecular classifications.


Subject(s)
Precision Medicine/methods , Triple Negative Breast Neoplasms/therapy , Female , Gene Expression Profiling , Humans , Molecular Targeted Therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
14.
Dis Model Mech ; 8(3): 237-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25633981

ABSTRACT

The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.


Subject(s)
Disease Models, Animal , Mammary Neoplasms, Animal/pathology , Neoplasm Metastasis/pathology , Animals , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Estrogen Receptor alpha/antagonists & inhibitors , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Mammary Neoplasms, Animal/classification , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis/genetics , Neoplasm Proteins/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tumor Suppressor Protein p53/metabolism
15.
Cancer Res ; 74(18): 5091-102, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25224959

ABSTRACT

The TGFß growth factor family member BMP4 is a potent suppressor of breast cancer metastasis. In the mouse, the development of highly metastatic mammary tumors is associated with an accumulation of myeloid-derived suppressor cells (MDSC), the numbers of which are reduced by exogenous BMP4 expression. MDSCs are undetectable in naïve mice but can be induced by treatment with granulocyte colony-stimulating factor (G-CSF/Csf3) or by secretion of G-CSF from the tumor. Both tumor-induced and G-CSF-induced MDSCs effectively suppress T-cell activation and proliferation, leading to metastatic enhancement. BMP4 reduces the expression and secretion of G-CSF by inhibiting NF-κB (Nfkb1) activity in human and mouse tumor lines. Because MDSCs correlate with poor prognosis in patients with breast cancer, therapies based on activation of BMP4 signaling may offer a novel treatment strategy for breast cancer. Cancer Res; 74(18); 5091-102. ©2014 AACR.


Subject(s)
Bone Morphogenetic Protein 4/immunology , Breast Neoplasms/pathology , Mammary Neoplasms, Experimental/pathology , Myeloid Cells/immunology , Animals , Breast Neoplasms/immunology , Cell Line, Tumor , Female , Humans , Mammary Neoplasms, Experimental/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , NF-kappa B/immunology , Neoplasm Metastasis , Signal Transduction
16.
Clin Cancer Res ; 19(8): 2107-16, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23470966

ABSTRACT

PURPOSE: The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Because tumor cell dissemination is often an early event in breast cancer progression and can occur before diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose-regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which are localized at the plasma membrane. EXPERIMENTAL DESIGN AND RESULTS: Here, we show that matched primary tumors and metastases from patients who died from advanced breast cancer also express high levels of GRP78. We used a peptidomimetic targeting strategy that uses a known GRP78-binding peptide fused to a proapoptotic moiety [designated bone metastasis targeting peptide 78 (BMTP78)] and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Furthermore, in preclinical metastasis models, we show that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases. CONCLUSIONS: The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide-mediated targeting of cell surface-localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated.


Subject(s)
Breast Neoplasms/drug therapy , Heat-Shock Proteins/metabolism , Neoplasm Micrometastasis/prevention & control , Peptides/pharmacology , Amino Acid Sequence , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival/drug effects , Drug Delivery Systems , Endoplasmic Reticulum Chaperone BiP , Female , Humans , Immunohistochemistry , Lung Neoplasms/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Molecular Sequence Data , Peptides/administration & dosage , Peptides/metabolism , Protein Binding , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
17.
Nat Rev Drug Discov ; 11(6): 479-97, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22653217

ABSTRACT

Nearly all deaths caused by solid cancers occur as a result of metastasis--the formation of secondary tumours in distant organs such as the lungs, liver, brain and bone. A major obstruction to the development of drugs with anti-metastatic efficacy is our fragmented understanding of how tumours 'evolve' and metastasize, at both the biological and genetic levels. Furthermore, although there is significant overlap in the metastatic process among different types of cancer, there are also marked differences in the propensity to metastasize, the extent of metastasis, the sites to which the tumour metastasizes, the kinetics of the process and the mechanisms involved. Here, we consider the case of breast cancer, which has some marked distinguishing features compared with other types of cancer. Considerable progress has been made in the development of preclinical models and in the identification of relevant signalling pathways and genetic regulators of metastatic breast cancer, and we discuss how these might facilitate the development of novel targeted anti-metastatic drugs.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoplasm Metastasis/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Disease Models, Animal , Disease Progression , Drug Delivery Systems , Drug Discovery , Female , Humans , Mammary Neoplasms, Animal , Neoplasm Metastasis/pathology
18.
PLoS One ; 6(6): e21022, 2011.
Article in English | MEDLINE | ID: mdl-21731642

ABSTRACT

We report the first quantitative and qualitative analysis of the poly (A)⁺ transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.


Subject(s)
Breast/cytology , Breast/metabolism , Gene Expression Profiling , Poly A/metabolism , Receptor, ErbB-2/metabolism , Alternative Splicing/genetics , Base Sequence , Cell Line , Computational Biology , Female , Gene Fusion/genetics , Gene Library , Genome, Human/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Receptor, ErbB-2/genetics , Reproducibility of Results
19.
Blood ; 117(3): 920-7, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21063027

ABSTRACT

Targeted drug delivery offers an opportunity for the development of safer and more effective therapies for the treatment of cancer. In this study, we sought to identify short, cell-internalizing peptide ligands that could serve as directive agents for specific drug delivery in hematologic malignancies. By screening of human leukemia cells with a combinatorial phage display peptide library, we isolated a peptide motif, sequence Phe-Phe/Tyr-Any-Leu-Arg-Ser (F(F)/(Y)XLRS), which bound to different leukemia cell lines and to patient-derived bone marrow samples. The motif was internalized through a receptor-mediated pathway, and we next identified the corresponding receptor as the transmembrane glycoprotein neuropilin-1 (NRP-1). Moreover, we observed a potent anti-leukemia cell effect when the targeting motif was synthesized in tandem to the pro-apoptotic sequence (D)(KLAKLAK)2. Finally, our results confirmed increased expression of NRP-1 in representative human leukemia and lymphoma cell lines and in a panel of bone marrow specimens obtained from patients with acute lymphoblastic leukemia or acute myelogenous leukemia compared with normal bone marrow. These results indicate that NRP-1 could potentially be used as a target for ligand-directed therapy in human leukemias and lymphomas and that the prototype CGFYWLRSC-GG-(D)(KLAKLAK)2 is a promising drug candidate in this setting.


Subject(s)
Leukemia/metabolism , Lymphoma/metabolism , Neuropilin-1/metabolism , Oligopeptides/pharmacology , Acute Disease , Amino Acid Sequence , Apoptosis/drug effects , Binding Sites/genetics , Bone Marrow Cells/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Immunohistochemistry , K562 Cells , Leukemia/genetics , Leukemia/pathology , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Lymphoma/genetics , Lymphoma/pathology , Molecular Sequence Data , Neuropilin-1/genetics , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Library , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding , RNA Interference , U937 Cells
20.
Clin Cancer Res ; 11(5): 1722-32, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15755993

ABSTRACT

PURPOSE: 2-Methoxyestradiol (2MEO) is being developed as a novel antitumor agent based on its antiangiogenic activity, tumor cell cytotoxicity, and apparent lack of toxicity. However, pharmacologic concentrations of 2MEO bind to estrogen receptors (ER). We have therefore examined the ER activity of 2MEO. EXPERIMENTAL DESIGN: Estrogenic actions of 2MEO were evaluated by changes in gene expression of the ER-positive (MCF7) breast tumor cell line and, in vivo, estrogenicity was assessed in breast tumor xenograft models and by measuring endocrine responses in uterus and liver. RESULTS: In the ER-positive breast tumor cell line (MCF7), microarray experiments revealed that 269 of 279 changes in gene expression common to 2MEO and estradiol were prevented by the ER antagonist, ICI 182,780. Changes in the expression of selected genes and their sensitivity to inhibition by ICI 182,780 were confirmed by quantitative reverse transcription-PCR measurement. Activation of ER in MCF7 cells by 2MEO was further confirmed by stimulation of an estrogen response element-dependent reporter gene that was blocked by ICI 182,780 (1 micromol/L). Doses of 2MEO (15-150 mg/kg) that had no antitumor efficacy in either nu/nu BALB/c or severe combined immunodeficient mice bearing ER-negative MDA-MB-435 tumors had uterotropic and hepatic estrogen-like actions. In female nu/nu BALB/c mice inoculated with the estrogen-dependent MCF7 tumor cells, 2MEO (50 mg/kg/d) supported tumor growth. CONCLUSIONS: Tumor growth enhancement by 2MEO at doses generating serum levels (100-500 nmol/L) that have estrogenic activity suggests that a conservative approach to the further clinical evaluation of this agent should be adopted and that its evaluation in breast cancer is inappropriate.


Subject(s)
Breast Neoplasms/pathology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Gene Expression Profiling , Receptors, Estrogen/drug effects , Receptors, Estrogen/physiology , 2-Methoxyestradiol , Animals , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...