Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(11): e0166977, 2016.
Article in English | MEDLINE | ID: mdl-27880809

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.


Subject(s)
Exons , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Mutation, Missense , Adolescent , Amino Acid Substitution , Bangladesh , Child , Child, Preschool , DNA Mutational Analysis , Female , Glucosephosphate Dehydrogenase Deficiency/enzymology , Humans , Infant , Infant, Newborn , Male
3.
PLoS Negl Trop Dis ; 9(7): e0003881, 2015.
Article in English | MEDLINE | ID: mdl-26154421

ABSTRACT

BACKGROUND: Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). METHODOLOGY: Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 µg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. PRINCIPLE FINDINGS: Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 µg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. CONCLUSION: We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.


Subject(s)
Cholera Vaccines/immunology , Cholera/prevention & control , Mucous Membrane/immunology , O Antigens/immunology , Tetanus Toxin/immunology , Vaccines, Conjugate/immunology , Adolescent , Adult , Animals , Antibodies, Bacterial/immunology , Child , Child, Preschool , Cholera/immunology , Cholera/microbiology , Cholera Vaccines/administration & dosage , Cholera Vaccines/chemistry , Disease Models, Animal , Female , Humans , Immunization , Immunologic Memory , Male , Mice , Middle Aged , O Antigens/administration & dosage , O Antigens/genetics , Tetanus Toxin/administration & dosage , Tetanus Toxin/chemistry , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/chemistry , Vibrio cholerae O1/immunology , Young Adult
4.
PLoS Negl Trop Dis ; 8(2): e2683, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24516685

ABSTRACT

BACKGROUND: Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. METHODOLOGY: Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide-core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. PRINCIPAL FINDINGS: We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. CONCLUSION: We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.


Subject(s)
Cholera Vaccines/immunology , Cholera/prevention & control , O Antigens/immunology , Vaccines, Conjugate/immunology , Animals , Antibodies, Bacterial/blood , Cholera/immunology , Cholera/mortality , Cholera Vaccines/chemistry , Cholera Vaccines/metabolism , Disease Models, Animal , Female , Mice , O Antigens/chemistry , O Antigens/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/metabolism
5.
Clin Vaccine Immunol ; 20(6): 780-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23515016

ABSTRACT

Current oral cholera vaccines induce lower levels of protective efficacy and shorter durations of protection in young children than in adults. Immunity against cholera is serogroup specific, and immune responses to Vibrio cholerae lipopolysaccharide (LPS), the antigen that mediates serogroup-specific responses, are associated with protection against disease. Despite this, responses against V. cholerae O-specific polysaccharide (OSP), a key component of the LPS responsible for specificity, have not been characterized in children. Here, we report a comparison of polysaccharide antibody responses in children from a region in Bangladesh where cholera is endemic, including infants (6 to 23 months, n = 15), young children (24 to 59 months, n = 14), and older children (5 to 15 years, n = 23) who received two doses of a killed oral cholera vaccine 14 days apart. We found that infants and young children receiving the vaccine did not mount an IgG, IgA, or IgM antibody response to V. cholerae OSP or LPS, whereas older children showed significant responses. In comparison to the vaccinees, young children with wild-type V. cholerae O1 Ogawa infection did mount significant antibody responses against OSP and LPS. We also demonstrated that OSP responses correlated with age in vaccinees, but not in cholera patients, reflecting the ability of even young children with wild-type cholera to develop OSP responses. These differences might contribute to the lower efficacy of protection rendered by vaccination than by wild-type disease in young children and suggest that efforts to improve lipopolysaccharide-specific responses might be critical for achieving optimal cholera vaccine efficacy in this younger age group.


Subject(s)
Antibodies, Bacterial/blood , Cholera Vaccines/immunology , Cholera/immunology , O Antigens/immunology , Vibrio cholerae/immunology , Adolescent , Bangladesh , Child , Child, Preschool , Cholera Vaccines/administration & dosage , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Male , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
6.
Proc Natl Acad Sci U S A ; 108(12): 4858-63, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21368204

ABSTRACT

The human APOBEC3 (A3A-A3H) locus encodes six cytidine deaminases that edit single-stranded DNA, the result being DNA peppered with uridine. Although several cytidine deaminases are clearly restriction factors for retroviruses and hepadnaviruses, it is not known if APOBEC3 enzymes have roles outside of these settings. It is shown here that both human mitochondrial and nuclear DNA are vulnerable to somatic hypermutation by A3 deaminases, with APOBEC3A standing out among them. The degree of editing is much greater in patients lacking the uracil DNA-glycolyase gene, indicating that the observed levels of editing reflect a dynamic composed of A3 editing and DNA catabolism involving uracil DNA-glycolyase. Nonetheless, hyper- and lightly mutated sequences went hand in hand, raising the hypothesis that recurrent low-level mutation by APOBEC3A could catalyze the transition from a healthy to a cancer genome.


Subject(s)
Cytosine Deaminase/metabolism , DNA, Mitochondrial/metabolism , Genetic Loci , Genome, Human , Mutation , APOBEC Deaminases , Cytidine Deaminase , Cytosine Deaminase/genetics , DNA, Mitochondrial/genetics , Female , HeLa Cells , Hepadnaviridae/genetics , Hepadnaviridae/metabolism , Humans , Male , Neoplasms/enzymology , Neoplasms/genetics , Retroviridae/genetics , Retroviridae/metabolism , Uracil-DNA Glycosidase/deficiency , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...