Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JMIR Mhealth Uhealth ; 10(11): e41455, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36383404

ABSTRACT

BACKGROUND: Advances in mobile technology over the last 10 years have expanded its use in scientific research. However, there are challenges in creating a reliable system for intervention content delivery and data collection in an environment with limited internet connectivity and limited staffing capacity. The Sexual Communication and Consent (SCC) study used tablets to provide individualized Sexual Assault Prevention and Response training in a classroom environment that was both technologically and support staff limited. OBJECTIVE: We developed the SCC Basic Military Training app and a separate Sexual Assault Response Coordinator app to support individualized training within the new SCC program. This paper presents the functionality, protocols, challenges, and feasibility of deploying mobile technology in an educational environment in the military with limited resources. METHODS: We developed both mobile apps targeting the Apple iOS ecosystem. The Basic Military Training app provided a screening instrument that routed the trainee into 1 of 5 specific intervention programs. Over 2 days of basic military training set 2 weeks apart, trainees received a combined 6 hours of program-specific tablet training, combined with universal, interactive classroom training, led by qualified instructors. The Sexual Assault Response Coordinator app, used to deliver supplemental content to a subgroup of trainees, was made available for voluntary and private use at the Sexual Assault Response Coordinator's office on base. All anonymous data were manually transferred onto laptops, where the data were aggregated into files and securely transferred to the project staff for analysis. The study was conducted at the Lackland Air Force Base, Joint Base San Antonio, with 9196 trainees providing the data. RESULTS: A total of 7742 trainees completed both the sessions of the SCC program and a series of evaluative assessments. Some trainees did not receive day 2 training, and only received day 1 training because the COVID-19 pandemic shortened the study period. Of the 190 SCC classes taught, only one class was unable to complete tablet training because of Apple licensing-related technology failure. The 360 study tablets were distributed across 3 classrooms (120 per classroom) and were handled at least 16,938 times with no reports of breakage or requiring replacement. Wi-Fi access limitations exacerbated the complexity of Apple licensing revalidation and the secure transfer of data from the classroom to project personnel. The instructor staff's limited technical knowledge to perform certain technical tasks was challenging. CONCLUSIONS: The results demonstrated the feasibility of deploying a mobile app for tablet-based training in a military educational environment. Although successful, the study was not without technical challenges. This paper gives examples of technical lessons learned and recommendations for conducting the study differently, with the aim that the knowledge gained may be helpful to other researchers encountering similar requirements.


Subject(s)
COVID-19 , Military Personnel , Sex Offenses , Humans , Pandemics , Ecosystem , Sex Offenses/prevention & control , Technology
2.
JMIR Form Res ; 6(5): e34041, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35532978

ABSTRACT

BACKGROUND: Young African American women have higher rates of sexually transmitted infections, including HIV, than those of young women of other racial and ethnic groups. Gender-, culture-, and age-specific interventions are needed to end the HIV epidemic. The Women's CoOp (WC) is an HIV risk-reduction intervention that is proven to be efficacious in various face-to-face formats. OBJECTIVE: This study aims to adapt the delivery method of an evidence-based intervention, the WC, from an in-person format to a self-guided mobile health (mHealth) format while ensuring that core elements are maintained for intervention comparability and fidelity. METHODS: Several adaptation phases were conducted by using the Personal Health Informatics and Intervention Toolkit (PHIT) as a guiding point to create the mobile app version of the WC. Throughout 5 phases, we established the implementation groundwork for the app; conducted formative research activities to test the initial draft of the app and obtain feedback; applied the PHIT toolkit programming structure to produce the mHealth version of the WC intervention; conducted usability testing and pretesting with interested parties, followed by in-house testing by WC interventionists and PHIT developers; and deployed the app to tablets and distributed it to study participants. The app underwent regular maintenance updates during the study. RESULTS: The team converted the seven elements of the WC as accurately as possible for comparability to determine efficacy in a mobile app format while changing little about the basic delivery methods. For instance, cue card presentations of the materials delivered by the intervention staff were presented within the app but with voice-over narration and in a self-guided format rather than being led by a staff member. Other aspects of the intervention did not lend themselves to such straightforward adaptation, such as hands-on condom proficiency practice and one-on-one goal-setting activities. In these cases, the subject matter experts and app developers worked together to find comparable analogs to be used within the app. Once developed, tested, and finalized, the mHealth WC app was deployed into local health departments as part of a randomized trial. CONCLUSIONS: This systematic adaptation process created an accurate mHealth equivalent of an existing, in-person behavioral health intervention. Although participants' reception of the app during the formative developmental phase was overall positive, maintaining fidelity to the in-person delivery compromised the natural capabilities of a mobile app, such as further gamification, different types of interactivity, and integrated notifications and messaging, which could be helpful for participants' adherence to the intervention schedule. Given the development and implementation of the app, the next step is to examine the impact of the app and its efficacy in HIV and substance use risk-reduction.

3.
JMIR Mhealth Uhealth ; 8(8): e15156, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32755883

ABSTRACT

BACKGROUND: With the increasing use of mobile devices to access the internet and as the main computing system of apps, there is a growing market for mobile health apps to provide self-care advice. Their effectiveness with regard to diet and fitness tracking, for example, needs to be examined. The majority of American adults fail to meet daily recommendations for healthy behavior. Testing user engagement with an app in a controlled environment can provide insight into what is effective and not effective in an app focused on improving diet and exercise. OBJECTIVE: We developed Rams Have Heart, a mobile app, to support a cardiovascular disease (CVD) intervention course. The app tracks healthy behaviors, including fruit and vegetable consumption and physical activity, throughout the day. This paper aimed to present its functionality and evaluated adherence among the African American college student population. METHODS: We developed the app using the Personal Health Informatics and Intervention Toolkit, a software framework. Rams Have Heart integrates self-reported health screening with health education, diary tracking, and user feedback modules to acquire data and assess progress. The parent study, conducted at a historically black college and university-designated institution in southeastern United States, consisted of a semester-long intervention administered as an academic course in the fall, for 3 consecutive years. Changes were made after the cohort 1 pilot study, so results only include cohorts 2 and 3, comprising a total of 115 students (n=55 intervention participants and n=54 control participants) aged from 17 to 24 years. Data collected over the study period were transferred using the secure Hypertext Transfer Protocol Secure protocol and stored in a secure Structured Query Language server database accessible only to authorized persons. SAS software was used to analyze the overall app usage and the specific results collected. RESULTS: Of the 55 students in the intervention group, 27 (49%) students in cohort 2 and 25 (45%) in cohort 3 used the Rams Have Heart app at least once. Over the course of the fall semester, app participation dropped off gradually until exam week when most students no longer participated. The average fruit and vegetable intake increased slightly, and activity levels decreased over the study period. CONCLUSIONS: Rams Have Heart was developed to allow daily tracking of fruit and vegetable intake and physical activity to support a CVD risk intervention for a student demographic susceptible to obesity, heart disease, and type 2 diabetes. We conducted an analysis of app usage, function, and user results. Although a mobile app provides privacy and flexibility for user participation in a research study, Rams Have Heart did not improve compliance or user outcomes. Health-oriented research studies relying on apps in support of user goals need further evaluation.


Subject(s)
Mobile Applications , Adolescent , Diabetes Mellitus, Type 2 , Female , Fruit , Humans , Male , Pilot Projects , Students , Vegetables , Young Adult
4.
JMIR Mhealth Uhealth ; 7(9): e12590, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31493325

ABSTRACT

BACKGROUND: Psychological resilience is critical to minimize the health effects of traumatic events. Trauma may induce a chronic state of hyperarousal, resulting in problems such as anxiety, insomnia, or posttraumatic stress disorder. Mind-body practices, such as relaxation breathing and mindfulness meditation, help to reduce arousal and may reduce the likelihood of such psychological distress. To better understand resilience-building practices, we are conducting the Biofeedback-Assisted Resilience Training (BART) study to evaluate whether the practice of slow, paced breathing with or without heart rate variability biofeedback can be effectively learned via a smartphone app to enhance psychological resilience. OBJECTIVE: Our objective was to conduct a limited, interim review of user interactions and study data on use of the BART resilience training app and demonstrate analyses of real-time sensor-streaming data. METHODS: We developed the BART app to provide paced breathing resilience training, with or without heart rate variability biofeedback, via a self-managed 6-week protocol. The app receives streaming data from a Bluetooth-linked heart rate sensor and displays heart rate variability biofeedback to indicate movement between calmer and stressful states. To evaluate the app, a population of military personnel, veterans, and civilian first responders used the app for 6 weeks of resilience training. We analyzed app usage and heart rate variability measures during rest, cognitive stress, and paced breathing. Currently released for the BART research study, the BART app is being used to collect self-reported survey and heart rate sensor data for comparative evaluation of paced breathing relaxation training with and without heart rate variability biofeedback. RESULTS: To date, we have analyzed the results of 328 participants who began using the BART app for 6 weeks of stress relaxation training via a self-managed protocol. Of these, 207 (63.1%) followed the app-directed procedures and completed the training regimen. Our review of adherence to protocol and app-calculated heart rate variability measures indicated that the BART app acquired high-quality data for evaluating self-managed stress relaxation training programs. CONCLUSIONS: The BART app acquired high-quality data for studying changes in psychophysiological stress according to mind-body activity states, including conditions of rest, cognitive stress, and slow, paced breathing.


Subject(s)
Biofeedback, Psychology/methods , Breathing Exercises/standards , Stress, Psychological/therapy , Breathing Exercises/methods , Breathing Exercises/psychology , Female , Heart Rate/physiology , Humans , Male , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Relaxation Therapy/methods , Relaxation Therapy/psychology , Relaxation Therapy/standards , Resilience, Psychological , Self Care/instrumentation , Self Care/methods , Self Care/standards , Stress, Psychological/psychology , Surveys and Questionnaires , Teaching/psychology , Teaching/standards , Young Adult
5.
Mil Med ; 183(suppl_1): 353-363, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29635566

ABSTRACT

Post-traumatic stress and other problems often occur after combat, deployment, and other military operations. Because techniques such as mindfulness meditation show efficacy in improving mental health, our team developed a mobile application (app) for individuals in the armed forces with subclinical psychological problems as secondary prevention of more significant disease. Based on the Personal Health Intervention Toolkit (PHIT), a mobile app framework for personalized health intervention studies, PHIT for Duty integrates mindfulness-based relaxation, behavioral education in sleep quality and alcohol use, and psychometric and psychophysiological data capture. We evaluated PHIT for Duty in usability and health assessment studies to establish app quality for use in health research. Participants (N = 31) rated usability on a 1 (very hard) to 5 (very easy) scale and also completed the System Usability Scale (SUS) questionnaire (N = 9). Results were (mean ± SD) overall (4.5 ± 0.6), self-report instruments (4.5 ± 0.7), pulse sensor (3.7 ± 1.2), sleep monitor (4.4 ± 0.7), sleep monitor comfort (3.7 ± 1.1), and wrist actigraphy comfort (2.7 ± 0.9). The average SUS score was 85 ± 12, indicating a rank of 95%. A comparison of PHIT-based assessments to traditional paper forms demonstrated a high overall correlation (r = 0.87). These evaluations of usability, health assessment accuracy, physiological sensing, system acceptability, and overall functionality have shown positive results and affirmation for using the PHIT framework and PHIT for Duty application in mobile health research.


Subject(s)
Alcohol Drinking/psychology , Mobile Applications/standards , Stress, Psychological/psychology , Alcohol Drinking/therapy , Focus Groups , Humans , Mindfulness/instrumentation , Mindfulness/methods , North Carolina , Self-Management/methods , Sleep , Software Design , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/therapy , Stress, Psychological/complications , Stress, Psychological/therapy
6.
JMIR Mhealth Uhealth ; 3(2): e46, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26033047

ABSTRACT

Personal Health Intervention Toolkit (PHIT) is an advanced cross-platform software framework targeted at personal self-help research on mobile devices. Following the subjective and objective measurement, assessment, and plan methodology for health assessment and intervention recommendations, the PHIT platform lets researchers quickly build mobile health research Android and iOS apps. They can (1) create complex data-collection instruments using a simple extensible markup language (XML) schema; (2) use Bluetooth wireless sensors; (3) create targeted self-help interventions based on collected data via XML-coded logic; (4) facilitate cross-study reuse from the library of existing instruments and interventions such as stress, anxiety, sleep quality, and substance abuse; and (5) monitor longitudinal intervention studies via daily upload to a Web-based dashboard portal. For physiological data, Bluetooth sensors collect real-time data with on-device processing. For example, using the BinarHeartSensor, the PHIT platform processes the heart rate data into heart rate variability measures, and plots these data as time-series waveforms. Subjective data instruments are user data-entry screens, comprising a series of forms with validation and processing logic. The PHIT instrument library consists of over 70 reusable instruments for various domains including cognitive, environmental, psychiatric, psychosocial, and substance abuse. Many are standardized instruments, such as the Alcohol Use Disorder Identification Test, Patient Health Questionnaire-8, and Post-Traumatic Stress Disorder Checklist. Autonomous instruments such as battery and global positioning system location support continuous background data collection. All data are acquired using a schedule appropriate to the app's deployment. The PHIT intelligent virtual advisor (iVA) is an expert system logic layer, which analyzes the data in real time on the device. This data analysis results in a tailored app of interventions and other data-collection instruments. For example, if a user anxiety score exceeds a threshold, the iVA might add a meditation intervention to the task list in order to teach the user how to relax, and schedule a reassessment using the anxiety instrument 2 weeks later to re-evaluate. If the anxiety score exceeds a higher threshold, then an advisory to seek professional help would be displayed. Using the easy-to-use PHIT scripting language, the researcher can program new instruments, the iVA, and interventions to their domain-specific needs. The iVA, instruments, and interventions are defined via XML files, which facilities rapid app development and deployment. The PHIT Web-based dashboard portal provides the researcher access to all the uploaded data. After a secure login, the data can be filtered by criteria such as study, protocol, domain, and user. Data can also be exported into a comma-delimited file for further processing. The PHIT framework has proven to be an extensible, reconfigurable technology that facilitates mobile data collection and health intervention research. Additional plans include instrument development in other domains, additional health sensors, and a text messaging notification system.

7.
Stud Health Technol Inform ; 199: 35-9, 2014.
Article in English | MEDLINE | ID: mdl-24875686

ABSTRACT

With the emergence of mobile health (mHealth) apps, there is a growing demand for better tools for developing and evaluating mobile health interventions. Recently we developed the Personal Health Intervention Toolkit (PHIT), a software framework which eases app implementation and facilitates scientific evaluation. PHIT integrates self-report and physiological sensor instruments, evidence-based advisor logic, and self-help interventions such as meditation, health education, and cognitive behavior change. PHIT can be used to facilitate research, interventions for chronic diseases, risky behaviors, sleep, medication adherence, environmental monitoring, momentary data collection health screening, and clinical decision support. In a series of usability evaluations, participants reported an overall usability score of 4.5 on a 1-5 Likert scale and an 85 score on the System Usability Scale, indicating a high percentile rank of 95%.


Subject(s)
Biomedical Research/methods , Mobile Applications/standards , Program Evaluation/methods , Telemedicine/methods , Telemedicine/standards
8.
Stud Health Technol Inform ; 181: 268-72, 2012.
Article in English | MEDLINE | ID: mdl-22954869

ABSTRACT

The goal of this effort is to support prevention of psychological health problems through innovation in mobile personal health assessment and self-help intervention (SHI). For the U.S. military, we are developing and evaluating a field-deployable personalized application, PHIT for DutyTM, to help build resilience in healthy troops and support prevention in high-risk personnel. PHIT for Duty is delivered using any smartphone or tablet with optional nonintrusive physiological and behavioral sensors for health status monitoring. The application integrates a suite of health assessments with an intelligent advisor that recommends, tailors, and presents self-help advisories. PHIT for Duty is intended for secondary prevention of psychological health problems in persons who have been exposed to psychological trauma and may be showing some symptoms of distress, but have not been diagnosed with any psychological disease or disorder.


Subject(s)
Mental Disorders/prevention & control , Mental Disorders/psychology , Military Personnel/psychology , Therapy, Computer-Assisted/instrumentation , Adaptation, Psychological , Cell Phone , Cognitive Behavioral Therapy/methods , Humans , Psychometrics , Resilience, Psychological , Secondary Prevention , Self Care , Self Concept , Self-Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...