Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Multiphys ; 62024 Jun.
Article in English | MEDLINE | ID: mdl-38933498

ABSTRACT

Knowledge of the mechanical properties of brain tissue in vivo is essential to understanding the mechanisms underlying traumatic brain injury (TBI) and to creating accurate computational models of TBI and neurosurgical simulation. Brain white matter, which is composed of aligned, myelinated, axonal fibers, is structurally anisotropic. White matter in vivo also exhibits mechanical anisotropy, as measured by magnetic resonance elastography (MRE), but measurements of anisotropy obtained by mechanical testing of white matter ex vivo have been inconsistent. The minipig has a gyrencephalic brain with similar white matter and gray matter proportions to humans and therefore provides a relevant model for human brain mechanics. In this study, we compare estimates of anisotropic mechanical properties of the minipig brain obtained by identical, non-invasive methods in the live (in vivo) and dead animals (in situ). To do so, we combine wave displacement fields from MRE and fiber directions derived from diffusion tensor imaging (DTI) with a finite element-based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal alive and at specific times post-mortem. These maps show that white matter is stiffer, more dissipative, and more anisotropic than gray matter when the minipig is alive, but that these differences largely disappear post-mortem, with the exception of tensile anisotropy. Overall, brain tissue becomes stiffer, less dissipative, and less mechanically anisotropic post-mortem. These findings emphasize the importance of testing brain tissue properties in vivo. Statement of Significance: In this study, MRE and DTI in the minipig were combined to estimate, for the first time, anisotropic mechanical properties in the living brain and in the same brain after death. Significant differences were observed in the anisotropic behavior of brain tissue post-mortem. These results demonstrate the importance of measuring brain tissue properties in vivo as well as ex vivo, and provide new quantitative data for the development of computational models of brain biomechanics.

2.
J Mech Behav Biomed Mater ; 157: 106625, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38924921

ABSTRACT

We investigated the ability to tune the anisotropic mechanical properties of 3D-printed hydrogel lattices by modifying their geometry (lattice strut diameter, unit cell size, and unit cell scaling factor). Many soft tissues are anisotropic and the ability to mimic natural anisotropy would be valuable for developing tissue-surrogate "phantoms" for elasticity imaging (shear wave elastography or magnetic resonance elastography). Vintile lattices were 3D-printed in polyethylene glycol di-acrylate (PEGDA) using digital light projection printing. Two mechanical benchtop tests, dynamic shear testing and unconfined compression, were used to measure the apparent shear storage moduli (G') and apparent Young's moduli (E) of lattice samples. Increasing the unit cell size from 1.25 mm to 2.00 mm reduced the Young's and shear moduli of the lattices by 91% and 85%, respectively. Decreasing the strut diameter from 300 µm to 200 µm reduced the apparent shear moduli of the lattices by 95%. Increasing the geometric scaling ratio of the lattice unit cells from 1.00 × to 2.00 × increased mechanical anisotropy in shear (by a factor of 3.1) and in compression (by a factor of 2.9). Both simulations and experiments show that the effects of unit cell size and strut diameter are consistent with power law relationships between volume fraction and apparent elastic moduli. In particular, experimental measurements of apparent Young's moduli agree well with predictions of the theoretical Gibson-Ashby model. Thus, the anisotropic mechanical properties of a lattice can be tuned by the unit cell size, the strut diameter, and scaling factors. This approach will be valuable in designing tissue-mimicking hydrogel lattice-based composite materials for elastography phantoms and tissue engineered scaffolds.

3.
Ann Biomed Eng ; 52(8): 2162-2177, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38684606

ABSTRACT

Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (µSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 µm were formed: (1) uniform structure with 1 MPa structural modulus ( E ) designed to match equilibrium modulus of healthy articular cartilage, (2) E = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage ( E = 1 MPa) and bone ( E = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff µSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.


Subject(s)
Cartilage, Articular , Hydrogels , Polyethylene Glycols , Tissue Scaffolds , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Cartilage, Articular/physiology , Cartilage, Articular/diagnostic imaging , Animals , Tissue Engineering , Finite Element Analysis , Printing, Three-Dimensional
4.
J Vis Exp ; (193)2023 03 03.
Article in English | MEDLINE | ID: mdl-36939242

ABSTRACT

Pelvic organ prolapse (POP) is a condition that affects the integrity, structure, and mechanical support of the pelvic floor. The organs in the pelvic floor are supported by different anatomical structures, including muscles, ligaments, and pelvic fascia. The uterosacral ligament (USL) is a critical load-bearing structure, and injury to the USL results in a higher risk of developing POP. The present protocol describes the dissection of murine USLs and the pelvic floor organs alongside the acquisition of unique data on the USL biochemical composition and function using Raman spectroscopy and the evaluation of mechanical behavior. Mice are an invaluable model for preclinical research, but dissecting the murine USL is a difficult and intricate process. This procedure presents an approach to guide the dissection of murine pelvic floor tissues, including the USL, to enable multiple assessments and characterization. This work aims to aid the dissection of pelvic floor tissues by basic scientists and engineers, thus expanding the accessibility of research on the USL and pelvic floor conditions and the preclinical study of women's health using mouse models.


Subject(s)
Pelvic Floor , Pelvic Organ Prolapse , Female , Mice , Animals , Uterus/physiology , Ligaments/physiology , Fascia
5.
J Mech Behav Biomed Mater ; 128: 105102, 2022 04.
Article in English | MEDLINE | ID: mdl-35203020

ABSTRACT

The growth plate is a cartilaginous tissue that functions to lengthen bones in children. When fractured, however, the growth plate can lose this critical function. Our understanding of growth plate fracture and mechanobiology is currently hindered by sparse information on the growth plate's microscale spatial gradients in mechanical properties. In this study, we performed microindentation across the proximal tibia growth plate of 9-week-old New Zealand White rabbits (n = 15) to characterize spatial variations in mechanical properties using linear elastic and nonlinear poroelastic material models. Mean indentation results for Hertz reduced modulus ranged from 380 to 690 kPa, with a peak in the upper hypertrophic zone and significant differences (p < 0.05) between neighboring zones. Using a subset of these animals (n = 7), we characterized zonal structure and extracellular matrix content of the growth plate through confocal fluorescent microscopy and Raman spectroscopy mapping. Comparison between mechanical properties and matrix content across the growth plate showed that proteoglycan content correlated with compressive modulus. This study is the first to measure poroelastic mechanical properties from microindentation across growth plate cartilage and to discern differing mechanical properties between the upper and lower hypertrophic zones. This latter finding may explain the location of typical growth plate fractures. The spatial variation in our reported mechanical properties emphasize the heterogeneous structure of the growth plate which is important to inform future regenerative implant design and mechanobiological models.


Subject(s)
Cartilage , Growth Plate , Animals , Extracellular Matrix , Rabbits , Tibia
6.
Biofabrication ; 13(4)2021 09 16.
Article in English | MEDLINE | ID: mdl-34479218

ABSTRACT

Successful 3D scaffold designs for musculoskeletal tissue engineering necessitate full consideration of the form and function of the tissues of interest. When designing structures for engineering cartilage and osteochondral tissues, one must reconcile the need to develop a mechanically robust system that maintains the health of cells embedded in the scaffold. In this work, we present an approach that decouples the mechanical and biochemical needs and allows for the independent development of the structural and cellular niches in a scaffold. Using the highly tuned capabilities of digital light processing-based stereolithography, structures with complex architectures are achieved over a range of effective porosities and moduli. The 3D printed structure is infilled with mesenchymal stem cells and soft biomimetic hydrogels, which are specifically formulated with extracellular matrix analogs and tethered growth factors to provide selected biochemical cues for the guided differentiation towards chondrogenesis and osteogenesis. We demonstrate the ability to utilize these structures to (a) infill a focal chondral defect and mitigate macroscopic and cellular level changes in the cartilage surrounding the defect, and (b) support the development of a stratified multi-tissue scaffold for osteochondral tissue engineering.


Subject(s)
Biomimetics , Tissue Engineering , Cartilage , Chondrogenesis , Hydrogels , Printing, Three-Dimensional , Stereolithography , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...