Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(29): e2323013121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976737

ABSTRACT

Sr2IrO4 has attracted considerable attention due to its structural and electronic similarities to La2CuO4, the parent compound of high-Tc superconducting cuprates. It was proposed as a strong spin-orbit-coupled Jeff = 1/2 Mott insulator, but the Mott nature of its insulating ground state has not been conclusively established. Here, we use ultrafast laser pulses to realize an insulator-metal transition in Sr2IrO4 and probe the resulting dynamics using time- and angle-resolved photoemission spectroscopy. We observe a gap closure and the formation of weakly renormalized electronic bands in the gap region. Comparing these observations to the expected temperature and doping evolution of Mott gaps and Hubbard bands provides clear evidence that the insulating state does not originate from Mott correlations. We instead propose a correlated band insulator picture, where antiferromagnetic correlations play a key role in the gap opening. More broadly, our results demonstrate that energy-momentum-resolved nonequilibrium dynamics can be used to clarify the nature of equilibrium states in correlated materials.

2.
Phys Rev Lett ; 132(17): 176501, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728727

ABSTRACT

A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address exponentially separated timescales. We demonstrate how properties of such states can be computed using numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a time-local ansatz for the distribution function with separate Fermi functions for the electron and hole quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the photodoped state has hole and electron quasiparticles with strongly renormalized properties.

3.
Nature ; 622(7983): 487-492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37853152

ABSTRACT

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling1,2. Here we report experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS2 into cryogenic tunable terahertz cavities3 and show that a switch between conductive and insulating behaviours, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment.

4.
Phys Rev Lett ; 130(10): 106905, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962057

ABSTRACT

We investigate the impact of a bosonic degree of freedom on Yu-Shiba-Rusinov states emerging from a magnetic impurity in a conventional superconductor. Starting from the Anderson impurity model, we predict that an additional p-wave conduction band channel opens up if a bosonic mode is coupled to the tunneling between impurity and host, which implies an additional pair of odd-parity Yu-Shiba-Rusinov states. The bosonic mode can be a vibrational mode or the electromagnetic field in a cavity. The exchange couplings in the two channels depend sensitively on the state of the bosonic mode (ground state, few quanta, or classically driven Floquet state), which opens possibilities for phononics or photonics control of such systems, with a rich variety of ground and excited states.

5.
Phys Rev Lett ; 130(3): 036901, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763380

ABSTRACT

We propose a diagrammatic Monte Carlo approach for quantum impurity models, which can be regarded as a generalization of the strong-coupling expansion for fermionic impurity models. The algorithm is based on a self-consistently computed three-point vertex and a stochastically sampled four-point vertex, and it allows one to obtain numerically exact results in a wide parameter regime. The performance of the algorithm is demonstrated with applications to a spin-boson model representing an emitter in a waveguide. As a function of the coupling strength, the spin exhibits a delocalization-localization crossover at low temperatures, signaling a qualitative change in the real-time relaxation. In certain parameter regimes, the response functions of the emitter coupled to the electromagnetic continuum can be described by an effective Rabi model with appropriately defined parameters. We also discuss the spatial distribution of the photon density around the emitter.

6.
Rep Prog Phys ; 85(11)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36075190

ABSTRACT

We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.

7.
Phys Rev Lett ; 125(21): 217402, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33275019

ABSTRACT

Intertwined orders exist ubiquitously in strongly correlated electronic systems and lead to intriguing phenomena in quantum materials. In this Letter, we explore the unique opportunity of manipulating intertwined orders through entangling electronic states with quantum light. Using a quantum Floquet formalism to study the cavity-mediated interaction, we show the vacuum fluctuations effectively enhance the charge-density-wave correlation, giving rise to a phase with entangled electronic order and photon coherence, with putative superradiant behaviors in the thermodynamic limit. Furthermore, upon injecting even one single photon in the cavity, different orders, including s-wave and η-paired superconductivity, can be selectively enhanced. Our study suggests a new and generalizable pathway to control intertwined orders and create light-matter entanglement in quantum materials. The mechanism and methodology can be readily generalized to more complicated scenarios.

8.
Nat Commun ; 10(1): 5556, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804500

ABSTRACT

An elusive goal in the field of driven quantum matter is the induction of long-range order. Here, we propose a mechanism based on light-induced evaporative cooling of holes in a correlated fermionic system. Since the entropy of a filled narrow band grows rapidly with hole doping, the isentropic transfer of holes from a doped Mott insulator to such a band results in a drop of temperature. Strongly correlated Fermi liquids and symmetry-broken states could thus be produced by dipolar excitations. Using nonequilibrium dynamical mean field theory, we show that suitably designed chirped pulses may realize this cooling effect. In particular, we demonstrate the emergence of antiferromagnetic order in a system which is initially in a weakly correlated state above the maximum Néel temperature. Our work suggests a general strategy for inducing strong correlation phenomena in periodically modulated atomic gases in optical lattices or light-driven materials.

9.
Phys Rev Lett ; 123(19): 193602, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765173

ABSTRACT

We perform an ab initio comparison between nonequilibrium dynamical mean-field theory and optical lattice experiments by studying the time evolution of double occupations in the periodically driven Fermi-Hubbard model. For off-resonant driving, the range of validity of a description in terms of an effective static Hamiltonian is determined and its breakdown due to energy absorption close to resonance is demonstrated. For near-resonant driving, we investigate the response to a change in driving amplitude and discover an asymmetric excitation spectrum with respect to the detuning. In general, we find good agreement between experiment and theory, which cross validates the experimental and numerical approaches in a strongly correlated nonequilibrium system.

10.
J Phys Chem Lett ; 9(22): 6649-6655, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30388021

ABSTRACT

Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses. The dynamics exhibit three time scales, of which a 250 ± 70 fs time scale is attributed to solvent rearrangement. The two longer time scales of 1.3 ± 0.4 and 90 ± 20 ps can be correlated to the recently proposed ultrafast excited-state intramolecular proton transfer in a closely related molecule, quinophthalone.

11.
Nat Commun ; 9(1): 4581, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389918

ABSTRACT

Photo-induced hidden phases are often observed in materials with intertwined orders. Understanding the formation of these non-thermal phases is challenging and requires a resolution of the cooperative interplay between different orders on the ultra-short timescale. In this work, we demonstrate that non-equilibrium photo-excitations can induce a state with spin-orbital orders entirely different from the equilibrium state in the three-quarter-filled two-band Hubbard model. We identify a general mechanism governing the transition to the hidden state, which relies on a non-thermal partial melting of the intertwined orders mediated by photoinduced charge excitations in the presence of strong spin-orbital exchange interactions. Our study theoretically confirms the crucial role played by orbital degrees of freedom in the light-induced dynamics of strongly correlated materials and it shows that the switching to hidden states can be controlled already on the fs timescale of the electron dynamics.

12.
Phys Rev Lett ; 121(5): 057405, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118308

ABSTRACT

Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic steady states of wide-gap Mott insulators under ac driving. In the strong-field regime, the harmonic intensity exhibits multiple plateaus, whose cutoff energies ε_{cut}=U+mE_{0} scale with the Coulomb interaction U and the maximum field strength E_{0}. In this regime, the created doublons and holons are localized because of the strong field and the mth plateau originates from the recombination of mth nearest-neighbor doublon-holon pairs. In the weak-field regime, there is only a single plateau in the intensity, which originates from the recombination of itinerant doublons and holons. Here, ε_{cut}=Δ_{gap}+αE_{0}, with Δ_{gap} the band gap and α>1. We demonstrate that the Mott insulator shows a stronger high-harmonic intensity than a semiconductor model with the same dispersion as the Mott insulator, even if the semiconductor bands are broadened by impurity scattering to mimic the incoherent scattering in the Mott insulator.

13.
Phys Rev Lett ; 119(24): 247601, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29286755

ABSTRACT

We study the dynamics of excitonic insulators coupled to phonons using the time-dependent mean-field theory. Without phonon couplings, the linear response is given by the damped amplitude oscillations of the order parameter with a frequency equal to the minimum band gap. A phonon coupling to the interband transfer integral induces two types of long-lived collective oscillations of the amplitude, one originating from the phonon dynamics and the other from the phase mode, which becomes massive. We show that, even for small phonon coupling, a photoinduced enhancement of the exciton condensation and the gap can be realized. Using the Anderson pseudospin picture, we argue that the origin of the enhancement is a cooperative effect of the massive phase mode and the Hartree shift induced by the photoexcitation. We also discuss how the enhancement of the order and the collective modes can be observed with time-resolved photoemission spectroscopy.

14.
Phys Rev Lett ; 119(18): 187403, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219601

ABSTRACT

We show that, in optical pump-probe experiments on bulk samples, the statistical distribution of the intensity of ultrashort light pulses after interaction with a nonequilibrium complex material can be used to measure the time-dependent noise of the current in the system. We illustrate the general arguments for a photoexcited Peierls material. The transient noise spectroscopy allows us to measure to what extent electronic degrees of freedom dynamically obey the fluctuation-dissipation theorem, and how well they thermalize during the coherent lattice vibrations. The proposed statistical measurement developed here provides a new general framework to retrieve dynamical information on the excited distributions in nonequilibrium experiments, which could be extended to other degrees of freedom of magnetic or vibrational origin.

15.
Phys Rev Lett ; 119(8): 086401, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28952776

ABSTRACT

We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta_{2}NiSe_{5} investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of F_{C}=0.2 mJ cm^{-2}, the band gap narrows transiently, while it is enhanced above F_{C}. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta_{2}NiSe_{5}, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta_{2}NiSe_{5} with light on the femtosecond time scale.

16.
Phys Rev Lett ; 118(24): 246402, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28665669

ABSTRACT

We study the dynamics of screening in photodoped Mott insulators with long-ranged interactions using a nonequilibrium implementation of the GW plus extended dynamical mean-field theory formalism. Our study demonstrates that the complex interplay of the injected carriers with bosonic degrees of freedom (charge fluctuations) can result in long-lived transient states with properties that are distinctly different from those of thermal equilibrium states. Systems with strong nonlocal interactions are found to exhibit a self-sustained population inversion of the doublons and holes. This population inversion leads to low-energy antiscreening which can be detected in time-resolved electron-energy-loss spectra.

17.
Faraday Discuss ; 194: 509-524, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711778

ABSTRACT

An autoionizing resonance in molecular N2 is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20 ± 5 fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations suggest, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.

18.
Phys Rev Lett ; 117(9): 096403, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27610867

ABSTRACT

We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near the Mott transition, after the system is quenched into a hot electron state and equilibrates with an environment which is colder than the Fermi-liquid crossover temperature. Close to the transition, we identify a purely electronic bottleneck time scale, which depends on the spectral weight around the Fermi energy in the bad metallic phase in a nonlinear way. This time scale can be orders of magnitude larger than the bare and renormalized electronic hopping time, so that a separation of electronic and lattice time scales may break down. The results are obtained using nonequilibrium dynamical mean-field theory and a slave-rotor representation of the Anderson impurity model.

19.
Phys Rev Lett ; 116(16): 163003, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152799

ABSTRACT

Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1 fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

20.
Sci Rep ; 6: 21235, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883536

ABSTRACT

Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations, and can be 10-20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid.

SELECTION OF CITATIONS
SEARCH DETAIL
...