Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 620(7972): 116-121, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37407821

ABSTRACT

Granites are nearly absent in the Solar System outside of Earth. Achieving granitic compositions in magmatic systems requires multi-stage melting and fractionation, which also increases the concentration of radiogenic elements1. Abundant water and plate tectonics facilitate these processes on Earth, aiding in remelting. Although these drivers are absent on the Moon, small granite samples have been found, but details of their origin and the scale of systems they represent are unknown2. Here we report microwave-wavelength measurements of an anomalously hot geothermal source that is best explained by the presence of an approximately 50-kilometre-diameter granitic system below the thorium-rich farside feature known as Compton-Belkovich. Passive microwave radiometry is sensitive to the integrated thermal gradient to several wavelengths depth. The 3-37-gigahertz antenna temperatures of the Chang'e-1 and Chang'e-2 microwave instruments allow us to measure a peak heat flux of about 180 milliwatts per square metre, which is about 20 times higher than that of the average lunar highlands3,4. The surprising magnitude and geographic extent of this feature imply an Earth-like, evolved granitic system larger than believed possible on the Moon, especially outside of the Procellarum region5. Furthermore, these methods are generalizable: similar uses of passive radiometric data could vastly expand our knowledge of geothermal processes on the Moon and other planetary bodies.

3.
Nature ; 508(7496): 364-8, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24740066

ABSTRACT

The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.

SELECTION OF CITATIONS
SEARCH DETAIL
...