Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21986, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081893

ABSTRACT

Nonreciprocity is a highly desirable feature in photonic media since it allows for control over the traveling electromagnetic waves, in a way that goes far beyond ordinary filtering. One of the most conventional ways to achieve nonreciprocity is via employing gyrotropic materials; however, their time-reversal-symmetry-breaking effects are very weak and, hence, large, bulky setups combined with very strong magnetic biases are required for technologically useful devices. In this work, artificial heterostructures are introduced to enhance the effective nonreciprocal behavior by reducing the contribution of the diagonal susceptibilities in the collective response; in this way, the off-diagonal ones, that are responsible for nonreciprocity, seem bigger. In particular, alternating gyrotropic and metallic or plasmonic films make an epsilon-near-zero (ENZ) effective-medium by averaging the diagonal permittivities of opposite sign, representing the consecutive layers. The homogenization process leaves unaltered the nonzero off-diagonal permittivities of the original gyrotropic substance, which become dominant and ignite strong nonreciprocal response. Realistic material examples that could be implemented experimentally in the mid-infrared spectrum are provided while the robustness of the enhanced nonreciprocity in the presence of actual media losses is discussed and bandwidth limitations due to the unavoidable frequency dispersion are elaborated. The proposed concept can be extensively utilized in designing optical devices that serve a wide range of applications from signal isolation and wave circulation to unidirectional propagation and asymmetric power amplification.

2.
Micromachines (Basel) ; 14(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838168

ABSTRACT

A conductive meta-atom of toroidal topology is studied both theoretically and experimentally, demonstrating a sharp and highly controllable resonant response. Simulations are performed both for a free-space periodic metasurface and a pair of meta-atoms inserted within a rectangular metallic waveguide. A quasi-dark state with controllable radiative coupling is supported, allowing to tune the linewidth (quality factor) and lineshape of the supported resonance via the appropriate geometric parameters. By conducting a rigorous multipole analysis, we find that despite the strong toroidal dipole moment, it is the residual electric dipole moment that dictates the electromagnetic response. Subsequently, the structure is fabricated with 3D printing and coated with silver paste. Importantly, the structure is planar, consists of a single metallization layer and does not require a substrate when neighboring meta-atoms are touching, resulting in a practical, thin and potentially low-loss system. Measurements are performed in the 5 GHz regime with a vector network analyzer and a good agreement with simulations is demonstrated.

3.
Sci Rep ; 12(1): 19769, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36396673

ABSTRACT

We present polarization-sensitive gap surface plasmon metasurfaces fabricated with direct material processing using pulsed laser light, an alternative and versatile approach. In particular we imprint laser induced periodic surface structures on nanometer-thick Ni films, which are back-plated by a grounded dielectric layer with TiO2 and ZnO deposition followed by Au evaporation. The procedure results in a metal-insulator-metal type plasmonic metasurface with a corrugated top layer consisting of highly-ordered, sinusoidal shaped, periodic, thin, metallic nanowires. The metasurface sustains sharp, resonant gap surface plasmons and provides various opportunities for polarization control in reflection, which is here switched by the size and infiltrating material of the insulating cavity. The polarization control is associated with the polarization sensitive perfect absorption and leads to high extinction ratios in the near-IR and mid-IR spectral areas. Corresponding Fourier-transform infrared spectroscopy measurements experimentally demonstrate that the fabrication approach produces metasurfaces with very well-defined, controllable, sharp resonances and polarization sensitive resonant absorption response which, depending on the insulating cavity size, impacts either the normal or the parallel to the nanowires polarization.

4.
Opt Express ; 30(1): 460-472, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35201222

ABSTRACT

Graphene is an attractive two-dimensional material for nonlinear applications in the THz regime, since it possesses high third order nonlinearity and the ability to support tightly confined surface plasmons. Here, we study 2D-patterned graphene-patch metasurfaces for efficient third harmonic generation. The efficiency of the nonlinear process is enhanced by spectrally aligning the fundamental and third harmonic frequencies with resonances of the metasurface, leading to spatiotemporal energy confinement in both steps of excitation at ω and radiation at 3ω. This precise resonance alignment is enabled by the 2D-patterning; it is achieved by modifying the dispersion of the underlying plasmons and, thus, the spectral positions of the supported standing wave resonances. Efficiencies as high as -20dB (1%) for input intensity 0.1 MW/cm2 are achieved. Moreover, we verify that the efficiency does not deteriorate when finite-size metasurfaces are used in place of ideal periodic systems. Our results highlight the potential of graphene-based metasurfaces for nonlinear applications.

5.
Sci Rep ; 11(1): 11552, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34079009

ABSTRACT

Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8-13 µm) achieve passive heat dissipation to outer space (~ - 270 °C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8-13 µm, limiting the devices' efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an ~ 25.4% solar absorption enhancement, combined with a ~ ≤ 5.8 °C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of ~ 3.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands.

6.
Sci Rep ; 10(1): 17653, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33077768

ABSTRACT

A split-cube-resonator-based metamaterial structure that can act as a polarization- and direction-selective perfect absorber for the infrared region is theoretically and experimentally demonstrated. The structure, fabricated by direct laser writing and electroless silver plating, is comprised of four layers of conductively-coupled split-cube magnetic resonators, appropriately rotated to each other to bestow the desired electromagnetic properties. We show narrowband polarization-selective perfect absorption when the structure is illuminated from one side; the situation is reversed when illuminating from the other side, with the orthogonal linear polarization being absorbed. The absorption peak can be tuned in a wide frequency range by a sparser or denser arrangement of the split cube resonators, allowing to cover the entire atmospheric transparency window. The proposed metamaterial structure can find applications in polarization-selective thermal emission at the IR atmospheric transparency window for radiative cooling, in cost-effective infrared sensing devices, and in narrowband filters and linear polarizers in reflection mode.

7.
Materials (Basel) ; 13(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887426

ABSTRACT

In this work we present a method for fabricating three dimensional, ultralight and flexible millimeter metamaterial units using a commercial household 3D printer. The method is low-cost, fast, eco-friendly and accessible. In particular, we use the Fused Deposition Modeling 3D printing technique and we fabricate flexible conductive Spilt Ring Resonators (SRRs) in a free-standing form. We characterized the samples experimentally through measurements of their spectral transmission, using standard rectangular microwave waveguides. Our findings show that the resonators produce well defined resonant electromagnetic features that depend on the structural details and the infiltrating dielectric materials, indicating that the thin, flexible and light 3D printed structures may be used as electromagnetic microwave components and electromagnetic fabrics for coating a variety of devices and infrastructure units, while adapting to different shapes and sizes.

8.
Opt Express ; 28(13): 18548-18565, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672154

ABSTRACT

The radiative cooling of objects during daytime under direct sunlight has recently been shown to be significantly enhanced by utilizing nanophotonic coatings. Multilayer thin film stacks, 2D photonic crystals, etc. as coating structures improved the thermal emission rate of a device in the infrared atmospheric transparency window reducing considerably devices' temperature. Due to the increased heating in photovoltaic (PV) devices - that has significant adverse consequences on both their efficiency and life-time - and inspired by the recent advances in daytime radiative cooling, we developed a coupled thermal-electrical modeling to examine the physical mechanisms on how a radiative cooler affects the overall efficiency of commercial photovoltaic modules and how the radiative cooling impact is compared with the impact of other photonic strategies for reducing heat generation within PVs, such as ultraviolet and sub-bandgap reflection. Employing our modeling, which takes into account all the major intrinsic processes affected by the temperature variation in a PV device, we additionally identified the validity regimes of the currently existing PV-cooling models which treat the PV coolers as simple thermal emitters. Finally, we assessed some realistic photonic coolers from the literature, compatible with photovoltaics, to implement the radiative cooling requirements and the requirements related to the reduction of heat generation, and demonstrated their associated impact on the temperature reduction and PV efficiency. Consistent with previous works, we showed that combining radiative cooling with sub-bandgap reflection proves to be more promising for increasing PVs' efficiency. Providing the physical mechanisms and requirements for reducing PV operating temperature, our study provides guidelines for utilizing suitable photonic structures for enhancing the efficiency and the lifetime of PV devices.

9.
Phys Rev Lett ; 122(21): 213201, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31283318

ABSTRACT

Optical systems with gain and loss that respect parity-time (PT) symmetry can have real eigenvalues despite their non-Hermitian character. Chiral systems impose circularly polarized waves which do not preserve their handedness under the combined space- and time-reversal operations and, as a result, seem to be incompatible with systems possessing PT symmetry. Nevertheless, in this work we show that in certain configurations, PT symmetric permittivity, permeability, and chirality is possible; in addition, real eigenvalues are maintained even if the chirality goes well beyond PT symmetry. By obtaining all three constitutive parameters in realistic chiral metamaterials through simulations and retrieval, we show that the chirality can be tailored independently of permittivity and permeability; thus, in such systems, a wide control of new optical properties including advanced polarization control is achieved.

10.
ACS Photonics ; 6(3): 720-727, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30918912

ABSTRACT

We present an experimental demonstration and interpretation of an ultrafast optically tunable, graphene-based thin film absorption modulator for operation in the THz regime. The graphene-based component consists of a uniform CVD-grown graphene sheet stacked on an SU-8 dielectric substrate that is grounded by a metallic ground plate. The structure shows enhanced absorption originating from constructive interference of the impinging and reflected waves at the absorbing graphene sheet. The modulation of this absorption, which is demonstrated via a THz time-domain spectroscopy setup, is achieved by applying an optical pump signal, which modifies the conductivity of the graphene sheet. We report an ultrafast (on the order of few ps) absorption modulation on the order of 40% upon photoexcitation. Our results provide evidence that the optical pump excitation results in the degradation of the graphene THz conductivity, which is connected with the generation of hot carriers, the increase of the electronic temperature, and the dominant increase of the scattering rate over the carrier concentration as found in highly doped samples.

11.
Opt Express ; 27(5): 6842-6850, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876261

ABSTRACT

Structuring metal surfaces on the nanoscale has been shown to alter their fundamental processes like reflection or absorption by supporting surface plasmon resonances. Here, we propose metal films with subwavelength rectangular nanostructuring that perfectly absorb the incident radiation in the optical regime. The structures are fabricated with low-cost nanoimprint lithography and thus constitute an appealing alternative to elaborate absorber designs with complex meta-atoms or multilayer structuring. We conduct a thorough numerical analysis to gain physical insight on how the key structural parameters affect the optical response and identify the designs leading to broad spectral and angular bandwidths, both of which are highly desirable in practical absorber applications. Subsequently, we fabricate and measure the structures with an FT-IR spectrometer demonstrating very good agreement with theory. Finally, we assess the performance of the proposed structures as sensing devices by quantifying the dependence of the absorption peak frequency position on the superstrate material.

12.
Adv Opt Mater ; 6(22): 1800633, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30800617

ABSTRACT

A novel approach for reconfigurable wavefront manipulation with gradient metasurfaces based on permittivity-modulated elliptic dielectric rods is proposed. It is shown that the required 2π phase span in the local electromagnetic response of the metasurface can be achieved by pairing the lowest magnetic dipole Mie resonance with a toroidal dipole Mie resonance, instead of using the lowest two Mie resonances corresponding to fundamental electric and magnetic dipole resonances as customarily exercised. This approach allows for the precise matching of both the resonance frequencies and quality factors. Moreover, the accurate matching is preserved if the rod permittivity is varied, allowing for constructing reconfigurable gradient metasurfaces by locally modulating the permittivity in each rod. Highly efficient tunable beam steering and beam focusing with ultrashort focal lengths are numerically demonstrated, highlighting the advantage of the low-profile metasurfaces over bulky conventional lenses. Notably, despite using a matched pair of Mie resonances, the presence of an electric polarizability background allows to perform the wavefront shaping operations in reflection, rather than transmission. This has the advantage that any control circuitry necessary in an experimental realization can be accommodated behind the metasurface without affecting the electromagnetic response.

13.
Opt Express ; 24(11): 11376-86, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410066

ABSTRACT

We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of proposed dimer. We also examine the stability of dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed in various practical applications such as optical manipulation, sensing and imaging.

14.
Opt Express ; 20(12): 12752-60, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714304

ABSTRACT

In this paper we demonstrate the possibility of backward radiation from a negative permittivity planar (slab) waveguide. Furthermore, we show that backward radiation can be used to achieve sub-wavelength imaging of a point source placed close to such a slab or to a periodic layered system of slabs. Finally, we demonstrate backward-radiation-based imaging in the case of realistic materials operating in the THz regime, such as polaritonic alkali-halide systems.

15.
Appl Opt ; 46(17): 3617-27, 2007 Jun 10.
Article in English | MEDLINE | ID: mdl-17514324

ABSTRACT

During the past decade, optical imaging combined with tomographic approaches has proved its potential in offering quantitative three-dimensional spatial maps of chromophore or fluorophore concentration in vivo. Due to its direct application in biology and biomedicine, diffuse optical tomography (DOT) and its fluorescence counterpart, fluorescence molecular tomography (FMT), have benefited from an increase in devoted research and new experimental and theoretical developments, giving rise to a new imaging modality. The most recent advances in FMT and DOT are based on the capability of collecting large data sets by using CCDs as detectors, and on the ability to include multiple projections through recently developed noncontact approaches. For these to be implemented, we have developed an imaging setup that enables three-dimensional imaging of arbitrary shapes in fluorescence or absorption mode that is appropriate for small animal imaging. This is achieved by implementing a noncontact approach both for sources and detectors and coregistering surface geometry measurements using the same CCD camera. A thresholded shadowgrammetry approach is applied to the geometry measurements to retrieve the surface mesh. We present the evaluation of the system and method in recovering three-dimensional surfaces from phantom data and live mice. The approach is used to map the measured in vivo fluorescence data onto the tissue surface by making use of the free-space propagation equations, as well as to reconstruct fluorescence concentrations inside highly scattering tissuelike phantom samples. Finally, the potential use of this setup for in vivo small animal imaging and its impact on biomedical research is discussed.


Subject(s)
Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Optics and Photonics , Tomography, Optical/instrumentation , Algorithms , Animals , Calibration , Equipment Design , Green Fluorescent Proteins/chemistry , Imaging, Three-Dimensional , Mice , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Models, Statistical , Phantoms, Imaging , Surface Properties , Tomography, Optical/methods
16.
Mol Imaging ; 6(2): 96-107, 2007.
Article in English | MEDLINE | ID: mdl-17445504

ABSTRACT

Given that optical tomography is capable of quantitatively imaging the distribution of several important chromophores and fluorophores in vivo, there has been a great deal of interest in developing optical imaging systems with increased numbers of measurements under optimal experimental conditions. In this article, we present a novel system that enables three-dimensional imaging of fluorescent probes in whole animals using a noncontact setup, in parallel with a three-dimensional surface reconstruction algorithm. This approach is directed toward the in vivo imaging of fluorophore or fluorescent protein concentration in small animals. The system consists of a rotating sample holder and a lens-coupled charge-coupled device camera in combination with a fiber-coupled laser scanning device. By measuring multiple projections, large data sets can be obtained, thus improving the accuracy of the inversion models used for quantitative three-dimensional reconstruction of fluorochrome distribution, as well as facilitating a higher spatial resolution. In this study, the system was applied to determining the distribution of green fluorescent protein (GFP)-expressing T lymphocytes in a transgenic mouse model, thus demonstrating the potential of the system for studying immune system function. The technique was used to image and reconstruct fluorescence originating from 32 x 10(6) T cells in the thymus and 3 x 10(5) T cells in the spleen.


Subject(s)
Fluorescent Dyes/analysis , Green Fluorescent Proteins/analysis , Imaging, Three-Dimensional/methods , T-Lymphocytes/chemistry , Tomography/methods , Whole Body Imaging/methods , Animals , Flow Cytometry , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional/instrumentation , Mice , Mice, Transgenic , T-Lymphocytes/immunology , Tomography/instrumentation , Whole Body Imaging/instrumentation
17.
Langmuir ; 21(15): 6666-8, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008372

ABSTRACT

Amorphous glassy CaCO3 colloidal spheres of monomodal size distribution were studied by high-resolution Brillouin light scattering. The Young modulus of 37 GPa and shear modulus of 14 GPa of glassy CaCO3 at a density of 1.9 g/cm3 were extracted from the particle vibration frequencies by employing acoustic wave scattering cross-section calculations. The line shape of the low-frequency modes is a sensitive index of the particle polydispersity.

SELECTION OF CITATIONS
SEARCH DETAIL
...