Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Pathol Toxicol Oncol ; 17(3-4): 199-204, 1998.
Article in English | MEDLINE | ID: mdl-9726791

ABSTRACT

Several deposits of sulfide mineralization have been described in the ophiolites of Greece. Based on their mineralogical and chemical composition and the host rocks, two types can be distinguished: (1) the Fe-Cu-Ni-Co type consisting of pyrrhotite, chalcopyrite, Co-pentlandite, pyrite, magnetite + arsenides, +/- chromite, hosted in serpentinites, gabbros or diabases, which have variable geochemical characteristics, and (2) sulfide mineralization of the Cyprus type containing variable proportions of pyrite, chalcopyrite, bornite, and sphalerite. The spatial association with shear zones and fault systems, which is a common feature in both types of mineralization, provided the necessary permeability for the circulation of the responsible mineralized hydrothermal fluids. The selenium (Se) content in representative samples of both types of mineralization from the ophiolites of Pindos (Kondro, Perivoli, and Neropriona), Othrys (Eretria and A. Theodoroi), Veria (Trilofon), and Argolis (Ermioni) shows a wide variation. The highest values of Se (130 to 1900 ppm) were found in massive Fe-Cu sulfide ores from Kondro, in particular the Cu-rich portions (average 1300 ppm Se). The average values of Se for the Othrys sulfides are low (< 40 ppm Se). The Se content in a diabase breccia pipe (50 x 200 m) with disseminated pyrite mineralization (Neropriona) ranges from < 1 to 35 ppm Se. The highest values were noted in strongly altered samples that also exhibited a significant enrichment in platinum (1 ppm Pt). Sulfide mineralization (irregular to lens-like masses and stringers) associated with magnetite, hosted in gabbros exposed in the Perivoli area (Tsouma hill), shows a content ranging from 40 to 350 ppm Se. The distribution of Se in the studied type of the sulfide mineralization may be of genetic significance, indicating that the Se level, which often is much higher than in typical magmatic sulfides related to mafic-ultramafic rocks (average 90-100 ppm Se), may positively affect the environment.


Subject(s)
Geologic Sediments/analysis , Selenium/analysis , Sulfides/analysis , Environment , Greece , Minerals/analysis , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...