Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicol Teratol ; 74: 106809, 2019.
Article in English | MEDLINE | ID: mdl-31129159

ABSTRACT

Propiconazole is a triazole fungicide used in agriculture. Via run-off, it can enter the aquatic environment, and can adversely affect organisms. However, data are scarce on how propiconazole may affect early developmental life stages of fish. The objectives of this study were to evaluate the potential sub-lethal effects of propiconazole during zebrafish development. Wildtype zebrafish (ABTu strain) embryos and larvae were exposed to propiconazole (0.1-100 µM) for up to 150 hours post fertilization (hpf) depending upon the endpoint measured. Propiconazole decreased survival and induced hypopigmentation in fish at 100 µM compared to the water and solvent controls. Pericardial edema was also noted in embryos and larvae (beginning at 2-3 dpf) exposed to 100 µM propiconazole. To visualize the effects of propiconazole on the circulatory system in more detail, we exposed transgenic zebrafish (globin-LCR:eGFP) to the fungicide. Hematopoietic changes were observed within 48 h of exposure to 100 µM, and localization of blood cells in the cardic region became diffuse, indicating pooling of blood in the pericardial region. We measured oxidative respiration in embryos as sufficient ATP is needed for development. Exposure to 100 µM propiconazole (~6-30 hpf) reduced basal respiration (~50%), oligomycin-induced ATP linked respiration (~70%), proton leak (~30%), and non-mitochondrial respiration (~50%), indicating compromised mitochondrial bioenergetics. A Visual Motor Response (VMR) test was used to measure dark photokinesis behavior in larval fish exposed to propiconazole for a 6-day period. Larval fish exposed to the highest concentration in the assay (10 µM) showed evidence of hypoactivity. This study demonstrates that propiconazole can induce hypopigmentation in zebrafish, disrupt mitochondrial bioenergetics, and can alter locomotor activity. However, these sub-lethal responses were observed at concentrations above what is typically detected in the environment.


Subject(s)
Behavior, Animal/drug effects , Fungicides, Industrial/toxicity , Locomotion/drug effects , Oxygen Consumption/drug effects , Triazoles/toxicity , Animals , Cell Respiration/drug effects , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/growth & development , Mitochondria/drug effects , Pericardium/drug effects , Zebrafish/embryology
2.
Environ Toxicol Chem ; 37(11): 2758-2775, 2018 11.
Article in English | MEDLINE | ID: mdl-30094867

ABSTRACT

The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.


Subject(s)
Environmental Health , Gastrointestinal Microbiome , Toxicology , Water Pollution/analysis , Animals , Biodiversity , Disease , Humans
3.
Aquat Toxicol ; 199: 162-173, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29631217

ABSTRACT

Mitochondrial dysfunction is a prevalent molecular event that can result in multiple adverse outcomes. Recently, a novel high throughput method to assess metabolic capacity in fish embryos following exposure to chemicals has been adapted for environmental toxicology. Assessments of oxygen consumption rates using the Seahorse XF(e) 24/96 Extracellular Flux Analyzer (Agilent Technologies) can be used to garner insight into toxicant effects at early stages of development. Here we synthesize the current state of the science using high throughput metabolic profiling in zebrafish embryos, and present considerations for those wishing to adopt high throughput methods for mitochondrial bioenergetics into their research. Chemicals that have been investigated in zebrafish using this metabolic platform include herbicides (e.g. paraquat, diquat), industrial compounds (e.g. benzo-[a]-pyrene, tributyltin), natural products (e.g. quercetin), and anti-bacterial chemicals (i.e. triclosan). Some of these chemicals inhibit mitochondrial endpoints in the µM-mM range, and reduce basal respiration, maximum respiration, and spare capacity. We present a theoretical framework for how one can use mitochondrial performance data in zebrafish to categorize chemicals of concern and prioritize mitochondrial toxicants. Noteworthy is that our studies demonstrate that there can be considerable variation in basal respiration of untreated zebrafish embryos due to clutch-specific effects as well as individual variability, and basal oxygen consumption rates (OCR) can vary on average between 100 and 300 pmol/min/embryo. We also compare OCR between chorionated and dechorionated embryos, as both models are employed to test chemicals. After 24 h, dechorionated embryos remain responsive to mitochondrial toxicants, although they show a blunted response to the uncoupling agent carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP); dechorionated embryos are therefore a viable option for investigations into mitochondrial bioenergetics. We present an adverse outcome pathway framework that incorporates endpoints related to mitochondrial bioenergetics. High throughput bioenergetics assays conducted using whole embryos are expected to support adverse outcome pathways for mitochondrial dysfunction.


Subject(s)
Adverse Outcome Pathways , Embryo, Nonmammalian/metabolism , High-Throughput Screening Assays , Mitochondria/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Cell Respiration/drug effects , Embryo, Nonmammalian/drug effects , Mitochondria/drug effects , Oxidation-Reduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...