Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855869

ABSTRACT

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.


Subject(s)
Biomarkers , Disease Progression , Extracellular Vesicles , Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein B , Extracellular Vesicles/metabolism , Humans , Animals , Biomarkers/blood , Mice , Male , Female , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactant-Associated Protein B/blood , Pulmonary Surfactant-Associated Protein B/metabolism , Middle Aged , Aged , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Lung/pathology , Lung/metabolism , Proteomics/methods , Disease Models, Animal , Prognosis , Protein Precursors , Pulmonary Surfactant-Associated Proteins
3.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Article in English | MEDLINE | ID: mdl-38551536

ABSTRACT

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Subject(s)
Asthma , Biomarkers , Extracellular Vesicles , Galectins , Sinusitis , Humans , Asthma/blood , Asthma/physiopathology , Asthma/immunology , Asthma/diagnosis , Extracellular Vesicles/metabolism , Female , Male , Galectins/blood , Biomarkers/blood , Adult , Middle Aged , Sinusitis/blood , Sinusitis/immunology , Rhinitis/blood , Rhinitis/immunology , Rhinitis/physiopathology , Nasal Polyps/immunology , Nasal Polyps/blood , Eosinophils/immunology , Aged , Chronic Disease
4.
Sci Rep ; 13(1): 22054, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086863

ABSTRACT

The severity of chest X-ray (CXR) findings is a prognostic factor in patients with coronavirus disease 2019 (COVID-19). We investigated the clinical and genetic characteristics and prognosis of patients with worsening CXR findings during early hospitalization. We retrospectively included 1656 consecutive Japanese patients with COVID-19 recruited through the Japan COVID-19 Task Force. Rapid deterioration of CXR findings was defined as increased pulmonary infiltrates in ≥ 50% of the lung fields within 48 h of admission. Rapid deterioration of CXR findings was an independent risk factor for death, most severe illness, tracheal intubation, and intensive care unit admission. The presence of consolidation on CXR, comorbid cardiovascular and chronic obstructive pulmonary diseases, high body temperature, and increased serum aspartate aminotransferase, potassium, and C-reactive protein levels were independent risk factors for rapid deterioration of CXR findings. Risk variant at the ABO locus (rs529565-C) was associated with rapid deterioration of CXR findings in all patients. This study revealed the clinical features, genetic features, and risk factors associated with rapid deterioration of CXR findings, a poor prognostic factor in patients with COVID-19.


Subject(s)
COVID-19 , Humans , Retrospective Studies , X-Rays , Radiography, Thoracic , Lung
5.
NAR Genom Bioinform ; 5(4): lqad090, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37915762

ABSTRACT

Statistical fine-mapping prioritizes putative causal variants from a large number of candidate variants, and is widely used in expression quantitative loci (eQTLs) studies. In eQTL fine-mapping, the existence of causal variants for gene expression is not guaranteed, since the genetic heritability of gene expression explained by nearby (cis-) variants is limited. Here we introduce a refined fine-mapping algorithm, named Knockoff-Finemap combination (KFc). KFc estimates the probability that the causal variant(s) exist in the cis-window of a gene through construction of knockoff genotypes (i.e. a set of synthetic genotypes that resembles the original genotypes), and uses it to adjust the posterior inclusion probabilities (PIPs). Utilizing simulated gene expression data, we show that KFc results in calibrated PIP distribution with improved precision. When applied to gene expression data of 465 genotyped samples from the Japan COVID-19 Task Force (JCTF), KFc resulted in significant enrichment of a functional score as well as reporter assay hits in the top PIP bins. When combined with functional priors derived from an external fine-mapping study (GTEx), KFc resulted in a significantly higher proportion of hematopoietic trait putative causal variants in the top PIP bins. Our work presents improvements in the precision of a major fine-mapping algorithm.

6.
Nat Commun ; 14(1): 5789, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821442

ABSTRACT

The immunological basis of the clinical heterogeneity in autoimmune vasculitis remains poorly understood. In this study, we conduct single-cell transcriptome analyses on peripheral blood mononuclear cells (PBMCs) from newly-onset patients with microscopic polyangiitis (MPA). Increased proportions of activated CD14+ monocytes and CD14+ monocytes expressing interferon signature genes (ISGs) are distinctive features of MPA. Patient-specific analysis further classifies MPA into two groups. The MPA-MONO group is characterized by a high proportion of activated CD14+ monocytes, which persist before and after immunosuppressive therapy. These patients are clinically defined by increased monocyte ratio in the total PBMC count and have a high relapse rate. The MPA-IFN group is characterized by a high proportion of ISG+ CD14+ monocytes. These patients are clinically defined by high serum interferon-alpha concentrations and show good response to immunosuppressive therapy. Our findings identify the immunological phenotypes of MPA and provide clinical insights for personalized treatment and accurate prognostic prediction.


Subject(s)
Immunosuppressive Agents , Microscopic Polyangiitis , Humans , Immunosuppressive Agents/therapeutic use , Microscopic Polyangiitis/genetics , Microscopic Polyangiitis/drug therapy , Leukocytes, Mononuclear , Multiomics , Phenotype , Monocytes
7.
Ann Hematol ; 102(11): 3239-3249, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581712

ABSTRACT

An association between coronavirus disease 2019 (COVID-19) and the ABO blood group has been reported. However, such an association has not been studied in the Japanese population on a large scale. Little is known about the association between COVID-19 and ABO genotype. This study investigated the association between COVID-19 and ABO blood group/genotype in a large Japanese population. All Japanese patients diagnosed with COVID-19 were recruited through the Japan COVID-19 Task Force between February 2020 and October 2021. We conducted a retrospective cohort study involving 1790 Japanese COVID-19 patients whose DNA was used for a genome-wide association study. We compared the ABO blood group/genotype in a healthy population (n = 611, control) and COVID-19 patients and then analyzed their associations and clinical outcomes. Blood group A was significantly more prevalent (41.6% vs. 36.8%; P = 0.038), and group O was significantly less prevalent (26.2% vs. 30.8%; P = 0.028) in the COVID-19 group than in the control group. Moreover, genotype OO was significantly less common in the COVID-19 group. Furthermore, blood group AB was identified as an independent risk factor for most severe diseases compared with blood group O [aOR (95% CI) = 1.84 (1.00-3.37)]. In ABO genotype analysis, only genotype AB was an independent risk factor for most severe diseases compared with genotype OO. Blood group O is protective, whereas group A is associated with the risk of infection. Moreover, blood group AB is associated with the risk of the "most" severe disease.

8.
Nat Commun ; 14(1): 3671, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340002

ABSTRACT

Integrating genomic data of multiple cancers allows de novo cancer grouping and elucidating the shared genetic basis across cancers. Here, we conduct the pan-cancer and cross-population genome-wide association study (GWAS) meta-analysis and replication studies on 13 cancers including 250,015 East Asians (Biobank Japan) and 377,441 Europeans (UK Biobank). We identify ten cancer risk variants including five pleiotropic associations (e.g., rs2076295 at DSP on 6p24 associated with lung cancer and rs2525548 at TRIM4 on 7q22 nominally associated with six cancers). Quantifying shared heritability among the cancers detects positive genetic correlations between breast and prostate cancer across populations. Common genetic components increase the statistical power, and the large-scale meta-analysis of 277,896 breast/prostate cancer cases and 901,858 controls identifies 91 newly genome-wide significant loci. Enrichment analysis of pathways and cell types reveals shared genetic backgrounds across said cancers. Focusing on genetically correlated cancers can contribute to enhancing our insights into carcinogenesis.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Male , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Prostatic Neoplasms/genetics , Breast Neoplasms/genetics , Carcinogenesis/genetics , Polymorphism, Single Nucleotide
9.
BMJ Open Respir Res ; 10(1)2023 05.
Article in English | MEDLINE | ID: mdl-37230764

ABSTRACT

BACKGROUND: Krebs von den Lungen-6 (KL-6) is a known biomarker for diagnosis and monitoring of interstitial lung diseases. However, the role of serum KL-6 and the mucin 1 (MUC1) variant (rs4072037) in COVID-19 outcomes remains to be elucidated. We aimed to evaluate the relationships among serum KL-6 levels, critical outcomes and the MUC1 variant in Japanese patients with COVID-19. METHODS: This is a secondary analysis of a multicentre retrospective study using data from the Japan COVID-19 Task Force collected from February 2020 to November 2021, including 2226 patients with COVID-19 whose serum KL-6 levels were measured. An optimal serum KL-6 level cut-off to predict critical outcomes was determined and used for multivariable logistic regression analysis. Furthermore, the relationship among the allele dosage of the MUC1 variant, calculated from single nucleotide polymorphism typing data of genome-wide association studies using the imputation method, serum KL-6 levels and COVID-19 critical outcomes was evaluated. RESULTS: Serum KL-6 levels were significantly higher in patients with COVID-19 with critical outcomes (511±442 U/mL) than those without (279±204 U/mL) (p<0.001). Serum KL-6 levels ≥304 U/mL independently predicted critical outcomes (adjusted OR (aOR) 3.47, 95% CI 2.44 to 4.95). Moreover, multivariable logistic regression analysis with age and sex indicated that the MUC1 variant was independently associated with increased serum KL-6 levels (aOR 0.24, 95% CI 0.28 to 0.32) but not significantly associated with critical outcomes (aOR 1.11, 95% CI 0.80 to 1.54). CONCLUSION: Serum KL-6 levels predicted critical outcomes in Japanese patients with COVID-19 and were associated with the MUC1 variant. Therefore, serum KL-6 level is a potentially useful biomarker of critical COVID-19 outcomes.


Subject(s)
COVID-19 , Mucin-1 , Humans , Mucin-1/genetics , Retrospective Studies , East Asian People , Genome-Wide Association Study , COVID-19/genetics , Biomarkers
10.
Nat Genet ; 55(5): 753-767, 2023 05.
Article in English | MEDLINE | ID: mdl-37095364

ABSTRACT

Mechanisms underpinning the dysfunctional immune response in severe acute respiratory syndrome coronavirus 2 infection are elusive. We analyzed single-cell transcriptomes and T and B cell receptors (BCR) of >895,000 peripheral blood mononuclear cells from 73 coronavirus disease 2019 (COVID-19) patients and 75 healthy controls of Japanese ancestry with host genetic data. COVID-19 patients showed a low fraction of nonclassical monocytes (ncMono). We report downregulated cell transitions from classical monocytes to ncMono in COVID-19 with reduced CXCL10 expression in ncMono in severe disease. Cell-cell communication analysis inferred decreased cellular interactions involving ncMono in severe COVID-19. Clonal expansions of BCR were evident in the plasmablasts of patients. Putative disease genes identified by COVID-19 genome-wide association study showed cell type-specific expressions in monocytes and dendritic cells. A COVID-19-associated risk variant at the IFNAR2 locus (rs13050728) had context-specific and monocyte-specific expression quantitative trait loci effects. Our study highlights biological and host genetic involvement of innate immune cells in COVID-19 severity.


Subject(s)
COVID-19 , Leukocytes, Mononuclear , Humans , Genome-Wide Association Study , COVID-19/genetics , Single-Cell Analysis , Immunity, Innate/genetics
11.
BMC Pulm Med ; 23(1): 146, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101265

ABSTRACT

BACKGROUND: Although cases of respiratory bacterial infections associated with coronavirus disease 2019 (COVID-19) have often been reported, their impact on the clinical course remains unclear. Herein, we evaluated and analyzed the complication rates of bacterial infections, causative organisms, patient backgrounds, and clinical outcome in Japanese patients with COVID-19. METHODS: We performed a retrospective cohort study that included inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021) and obtained demographic, epidemiological, and microbiological results and the clinical course and analyzed the cases of COVID-19 complicated by respiratory bacterial infections. RESULTS: Of the 1,863 patients with COVID-19 included in the analysis, 140 (7.5%) had respiratory bacterial infections. Community-acquired co-infection at COVID-19 diagnosis was uncommon (55/1,863, 3.0%) and was mainly caused by Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pneumoniae. Hospital-acquired bacterial secondary infections, mostly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were diagnosed in 86 patients (4.6%). Severity-associated comorbidities were frequently observed in hospital-acquired secondary infection cases, including hypertension, diabetes, and chronic kidney disease. The study results suggest that the neutrophil-lymphocyte ratio (> 5.28) may be useful in diagnosing complications of respiratory bacterial infections. COVID-19 patients with community-acquired or hospital-acquired secondary infections had significantly increased mortality. CONCLUSIONS: Respiratory bacterial co-infections and secondary infections are uncommon in patients with COVID-19 but may worsen outcomes. Assessment of bacterial complications is important in hospitalized patients with COVID-19, and the study findings are meaningful for the appropriate use of antimicrobial agents and management strategies.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Respiratory Tract Infections , Staphylococcal Infections , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Coinfection/epidemiology , COVID-19 Testing , East Asian People , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Disease Progression
12.
Respir Investig ; 61(4): 454-459, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121116

ABSTRACT

We investigated the association between complete blood count, including neutrophil-to-lymphocyte ratio (NLR) in combination with patient characteristics, and coronavirus disease (COVID-19) outcomes to identify the best prognostic indicator. We analyzed data of patients with confirmed COVID-19 from the nationwide database of the Japan COVID-19 Task Force between February 2020 and November 2021. A composite outcome was defined as the most severe condition, including noninvasive positive-pressure ventilation, high-flow nasal cannula, invasive mechanical ventilation, extracorporeal membrane oxygenation, or death. Of 2425 patients in the analysis, 472 (19.5%) experienced a composite outcome. NLR was the best predictor of composite outcomes, with an area under the curve (AUC) of 0.81, and a sensitivity and specificity of 72.3% and 75.7%, respectively, using a cut-off value of 5.04. The combination of NLR and an oxygen requirement on admission had the highest AUC (0.88). This simple combination may help identify patients at risk of progression to severe disease.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Neutrophils , Oxygen , Retrospective Studies , Lymphocytes , Patient Acuity
13.
J Infect Chemother ; 29(4): 422-426, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36682606

ABSTRACT

OBJECTIVES: We investigated the occurrence of non-respiratory bacterial and fungal secondary infections, causative organisms, impact on clinical outcomes, and association between the secondary pathogens and mortality in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: This was a retrospective cohort study that included data from inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021). We obtained demographic, epidemiological, and microbiological data throughout the course of hospitalization and analyzed the cases of COVID-19 complicated by non-respiratory bacterial infections. RESULTS: Of the 1914 patients included, non-respiratory bacterial infections with COVID-19 were diagnosed in 81 patients (4.2%). Of these, 59 (3.1%) were secondary infections. Bacteremia was the most frequent bacterial infection, occurring in 33 cases (55.9%), followed by urinary tract infections in 16 cases (27.1%). Staphylococcus epidermidis was the most common causative organism of bacteremia. Patients with COVID-19 with non-respiratory secondary bacterial infections had significantly higher mortality, and a multivariate logistic regression analysis demonstrated that those with bacteremia (aOdds Ratio = 15.3 [5.97-39.1]) were at higher risk of death. Multivariate logistic regression analysis showed that age, male sex, use of steroids to treat COVID-19, and intensive care unit admission increased the risk for nosocomial bacteremia. CONCLUSIONS: Secondary bacteremia is an important complication that may lead to poor prognosis in cases with COVID-19. An appropriate medical management strategy must be established, especially for patients with concomitant predisposing factors.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Coinfection , Mycoses , Humans , Male , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , Coinfection/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Infections/microbiology , Mycoses/microbiology , COVID-19 Testing
14.
Proc Natl Acad Sci U S A ; 120(4): e2217902120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669118

ABSTRACT

Sex-biased humoral immune responses to COVID-19 patients have been observed, but the cellular basis for this is not understood. Using single-cell proteomics by mass cytometry, we find disrupted regulation of humoral immunity in COVID-19 patients, with a sex-biased loss of circulating follicular regulatory T cells (cTfr) at a significantly greater rate in male patients. In addition, a male sex-associated cellular network of T-peripheral helper, plasma blasts, proliferating and extrafollicular/atypical CD11c+ memory B cells was strongly positively correlated with neutralizing antibody concentrations and negatively correlated with cTfr frequency. These results suggest that sex-specific differences to the balance of cTfr and a network of extrafollicular antibody production-associated cell types may be a key factor in the altered humoral immune responses between male and female COVID-19 patients.


Subject(s)
Antibody Formation , COVID-19 , Female , Humans , Male , COVID-19/metabolism , Immunity, Humoral , T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Regulatory , B-Lymphocytes
15.
Int J Infect Dis ; 128: 121-127, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36563958

ABSTRACT

OBJECTIVES: Smoking and chronic obstructive pulmonary disease (COPD) are risk factors for severe COVID-19. However, limited literature exists on the effect of COPD and smoking on COVID-19 outcomes. This study examined the impact of smoking exposure in pack-years (PY) and COPD on COVID-19 outcomes among smokers in Japan. METHODS: The study included 1266 smokers enrolled by the Japan COVID-19 task force between February 2020 and December 2021. PY and COPD status was self-reported by patients. Patients were classified into the non-COPD (n = 1151) and COPD (n = 115) groups; the non-COPD group was further classified into <10 PY (n = 293), 10-30 PY (n = 497), and >30 PY (n = 361). The study outcome was the need for invasive mechanical ventilation (IMV). RESULTS: The incidence of IMV increased with increasing PY and was highest in the COPD group (<10 PY = 7.8%, 10-30 PY = 12.3%, >30 PY = 15.2%, COPD = 26.1%; P <0.001). A significant association was found for IMV requirement in the >30 PY and COPD groups through univariate (odds ratio [OR]: >30 PY = 2.11, COPD = 4.14) and multivariate (OR: >30 PY = 2.38; COPD = 7.94) analyses. Increasing PY number was also associated with increased IMV requirement in patients aged <65 years. CONCLUSION: Cumulative smoking exposure was positively associated with COVID-19 outcomes in smokers.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Japan , COVID-19/complications , Smoking/adverse effects , Risk Factors
16.
Inflamm Regen ; 42(1): 53, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36451245

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS: To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS: Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS: Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.

17.
Respir Res ; 23(1): 315, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380316

ABSTRACT

BACKGROUND: Respiratory symptoms are associated with coronavirus disease 2019 (COVID-19) outcomes. However, the impacts of upper and lower respiratory symptoms on COVID-19 outcomes in the same population have not been compared. The objective of this study was to characterize upper and lower respiratory symptoms and compare their impacts on outcomes of hospitalized COVID-19 patients. METHODS: This was a multicenter, retrospective cohort study; the database from the Japan COVID-19 Task Force was used. A total of 3314 COVID-19 patients were included in the study, and the data on respiratory symptoms were collected. The participants were classified according to their respiratory symptoms (Group 1: no respiratory symptoms, Group 2: only upper respiratory symptoms, Group 3: only lower respiratory symptoms, and Group 4: both upper and lower respiratory symptoms). The impacts of upper and lower respiratory symptoms on the clinical outcomes were compared. The primary outcome was the percentage of patients with poor clinical outcomes, including the need for oxygen supplementation via high-flow oxygen therapy, mechanical ventilation, and extracorporeal membrane oxygenation or death. RESULTS: Of the 3314 COVID-19 patients, 605, 1331, 1229, and 1149 were classified as Group 1, Group 2, Group 3, and Group 4, respectively. In univariate analysis, patients in Group 2 had the best clinical outcomes among all groups (odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.11-0.39), while patients in Group 3 had the worst outcomes (OR: 3.27, 95% CI: 2.43-4.40). Group 3 patients had the highest incidence of pneumonia, other complications due to secondary infections, and thrombosis during the clinical course. CONCLUSIONS: Upper and lower respiratory tract symptoms had vastly different impacts on the clinical outcomes of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies , Respiration, Artificial , Oxygen Inhalation Therapy
18.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36282593

ABSTRACT

Consecutive mRNA vaccinations against SARS-CoV-2 reinforced both innate and adaptive immune responses. However, it remains unclear whether the enhanced innate immune responses are mediated by epigenetic regulation and, if so, whether these effects persist. Using mass cytometry, RNA-Seq, and ATAC-Seq, we show that BNT162b2 mRNA vaccination upregulated antiviral and IFN-stimulated gene expression in monocytes with greater effects after the second vaccination than those after the first vaccination. Transcription factor-binding motif analysis also revealed enriched IFN regulatory factors and PU.1 motifs in accessible chromatin regions. Importantly, although consecutive BNT162b2 mRNA vaccinations boosted innate immune responses and caused epigenetic changes in isolated monocytes, we show that these effects occurred only transiently and disappeared 4 weeks after the second vaccination. Furthermore, single-cell RNA-Seq analysis revealed that a similar gene signature was impaired in the monocytes of unvaccinated patients with COVID-19 with acute respiratory distress syndrome. These results reinforce the importance of the innate immune response in the determination of COVID-19 severity but indicate that, unlike adaptive immunity, innate immunity is not unexpectedly sustained even after consecutive vaccination. This study, which focuses on innate immune memory, may provide novel insights into the vaccine development against infectious diseases.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , RNA, Messenger , Epigenesis, Genetic , Epigenetic Memory , SARS-CoV-2 , COVID-19/prevention & control , Immunity, Innate
19.
Nat Commun ; 13(1): 4830, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995775

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/epidemiology , COVID-19/genetics , Humans , Japan/epidemiology , Lectins, C-Type/genetics , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptors, Immunologic/genetics
20.
Nature ; 609(7928): 754-760, 2022 09.
Article in English | MEDLINE | ID: mdl-35940203

ABSTRACT

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Subject(s)
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...