Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Sci ; : e13550, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010656

ABSTRACT

When exposed to rhythmic patterns with temporal regularity, adults exhibit an inherent ability to extract and anticipate an underlying sequence of regularly spaced beats, which is internally constructed, as beats are experienced even when no events occur at beat positions (e.g., in the case of rests). Perception of rhythm and synchronization to periodicity is indispensable for development of cognitive functions, social interaction, and adaptive behavior. We evaluated neural oscillatory activity in premature newborns (n = 19, mean age, 32 ± 2.59 weeks gestational age) during exposure to an auditory rhythmic sequence, aiming to identify early traces of periodicity encoding and rhythm processing through entrainment of neural oscillations at this stage of neurodevelopment. The rhythmic sequence elicited a systematic modulation of alpha power, synchronized to expected beat locations coinciding with both tones and rests, and independent of whether the beat was preceded by tone or rest. In addition, the periodic alpha-band fluctuations reached maximal power slightly before the corresponding beat onset times. Together, our results show neural encoding of periodicity in the premature brain involving neural oscillations in the alpha range that are much faster than the beat tempo, through alignment of alpha power to the beat tempo, consistent with observations in adults on predictive processing of temporal regularities in auditory rhythms. RESEARCH HIGHLIGHTS: In response to the presented rhythmic pattern, systematic modulations of alpha power showed that the premature brain extracted the temporal regularity of the underlying beat. In contrast to evoked potentials, which are greatly reduced when there is no sounds event, the modulation of alpha power occurred for beats coinciding with both tones and rests in a predictive way. The findings provide the first evidence for the neural coding of periodicity in auditory rhythm perception before the age of term.

2.
Clin Neurophysiol ; 163: 236-243, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810567

ABSTRACT

OBJECTIVE: To characterize Negative Central Activity (NCA), an overlooked electroencephalographic activity of preterm newborns and investigate its relationship with brain injuries, dysfunction, and neurodevelopmental outcome. METHODS: 109 preterm infants (23-28 weeks) were retrospectively included. NCA were selected at the negative peak on EEG. Individual averaged NCA were automatically characterized. Brain structural data were collected from cranial ultrasounds (cUS). The neurodevelopmental outcome at two years of age was assessed by the Denver Developmental Screening Test-II. RESULTS: Thirty-six (33%) children showed NCA: 6,721 NCA were selected, a median of 75 (interquartile range, 25/157.3) per EEG. NCA showed a triphasic morphology, with a mean amplitude and duration of the negative component of 24.6-40.0 µV and 222.7-257.3 ms. The presence of NCA on EEG was associated with higher intraventricular haemorrhage (IVH) grade on the first (P = 0.016) and worst neonatal cUS (P < 0.001) and poorer neurodevelopmental outcome (P < 0.001). CONCLUSIONS: NCA is an abnormal EEG feature of extremely preterm newborns that may correspond to the functional neural impact of a vascular pathology. SIGNIFICANCE: The NCA relationships with an adverse outcome and the presence/severity of IVH argue for considering NCA in the assessment of pathological processes in the developing brain network and for early outcome prediction.


Subject(s)
Brain Injuries , Electroencephalography , Infant, Extremely Premature , Humans , Electroencephalography/methods , Male , Infant, Newborn , Infant, Extremely Premature/physiology , Female , Brain Injuries/physiopathology , Brain Injuries/diagnostic imaging , Retrospective Studies , Brain/physiopathology , Brain/diagnostic imaging , Neurodevelopmental Disorders/physiopathology , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/diagnosis , Child, Preschool
3.
J Neurosci ; 43(15): 2794-2802, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36914264

ABSTRACT

The ability to extract rhythmic structure is important for the development of language, music, and social communication. Although previous studies show infants' brains entrain to the periodicities of auditory rhythms and even different metrical interpretations (e.g., groups of two vs three beats) of ambiguous rhythms, whether the premature brain tracks beat and meter frequencies has not been explored previously. We used high-resolution electroencephalography while premature infants (n = 19, 5 male; mean age, 32 ± 2.59 weeks gestational age) heard two auditory rhythms in the incubators. We observed selective enhancement of the neural response at both beat- and meter-related frequencies. Further, neural oscillations at the beat and duple (groups of 2) meter were phase aligned with the envelope of the auditory rhythmic stimuli. Comparing the relative power at beat and meter frequencies across stimuli and frequency revealed evidence for selective enhancement of duple meter. This suggests that even at this early stage of development, neural mechanisms for processing auditory rhythms beyond simple sensory coding are present. Our results add to a few previous neuroimaging studies demonstrating discriminative auditory abilities of premature neural networks. Specifically, our results demonstrate the early capacities of the immature neural circuits and networks to code both simple beat and beat grouping (i.e., hierarchical meter) regularities of auditory sequences. Considering the importance of rhythm processing for acquiring language and music, our findings indicate that even before birth, the premature brain is already learning this important aspect of the auditory world in a sophisticated and abstract way.SIGNIFICANCE STATEMENT Processing auditory rhythm is of great neurodevelopmental importance. In an electroencephalography experiment in premature newborns, we found converging evidence that when presented with auditory rhythms, the premature brain encodes multiple periodicities corresponding to beat and beat grouping (meter) frequencies, and even selectively enhances the neural response to meter compared with beat, as in human adults. We also found that the phase of low-frequency neural oscillations aligns to the envelope of the auditory rhythms and that this phenomenon becomes less precise at lower frequencies. These findings demonstrate the initial capacities of the developing brain to code auditory rhythm and the importance of special care to the auditory environment of this vulnerable population during a highly dynamic period of neural development.


Subject(s)
Auditory Perception , Music , Infant, Newborn , Adult , Humans , Male , Infant , Acoustic Stimulation/methods , Auditory Perception/physiology , Brain/physiology , Electroencephalography/methods , Hearing , Periodicity
4.
Dev Cogn Neurosci ; 58: 101168, 2022 12.
Article in English | MEDLINE | ID: mdl-36335806

ABSTRACT

Rhythm is a fundamental component of the auditory world, present even during the prenatal life. While there is evidence that some auditory capacities are already present before birth, whether and how the premature neural networks process auditory rhythm is yet not known. We investigated the neural response of premature neonates at 30-34 weeks gestational age to violations from rhythmic regularities in an auditory sequence using high-resolution electroencephalography and event-related potentials. Unpredicted rhythm violations elicited a fronto-central mismatch response, indicating that the premature neonates detected the rhythmic regularities. Next, we examined the cortical effective connectivity underlying the elicited mismatch response using dynamic causal modeling. We examined the connectivity between cortical sources using a set of 16 generative models that embedded alternate hypotheses about the role of the frontal cortex as well as backward fronto-temporal connection. Our results demonstrated that the processing of rhythm violations was not limited to the primary auditory areas, and as in the case of adults, encompassed a hierarchy of temporo-frontal cortical structures. The result also emphasized the importance of top-down (backward) projections from the frontal cortex in explaining the mismatch response. Our findings demonstrate a sophisticated cortical structure underlying predictive rhythm processing at the onset of the thalamocortical and cortico-cortical circuits, two months before term.


Subject(s)
Auditory Cortex , Electroencephalography , Adult , Infant, Newborn , Humans , Acoustic Stimulation , Evoked Potentials/physiology , Frontal Lobe , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology
5.
Cereb Cortex ; 33(2): 278-289, 2022 12 20.
Article in English | MEDLINE | ID: mdl-35235654

ABSTRACT

Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication. Here, we investigated the evolution of CFC, in terms of SW theta phase-amplitude coupling (PAC), during the course of very early development between 25 and 32 weeks of gestational age in 23 premature neonates. We used high-resolution EEG and dipole models as spatial filters to extract the source waveforms corresponding to TTA-SW. We also carried out nonlinear phase-dependent correlation measurements to examine whether the characteristics of the SW slopes are associated with TTA-SW coupling. We show that neurodevelopment leads to temporal accumulation of the SW theta PAC toward the trough of SW. Steepness of the negative going slope of SW determined the degree of this coupling. Systematic modulation of SW-TTA CFC during development is a signature of the complex development of local cortico-cortical perisylvian networks and distant thalamo-cortical neural circuits driving this nested activity over the perisylvian networks.


Subject(s)
Electroencephalography , Temporal Lobe , Infant, Newborn , Adult , Humans , Gestational Age , Neural Networks, Computer
6.
Hum Brain Mapp ; 41(16): 4691-4703, 2020 11.
Article in English | MEDLINE | ID: mdl-33463873

ABSTRACT

Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific neurobiomarker of the early neurodevelopment of perisylvian networks observed as early as 24 weeks of gestational age (wGA). It is present at the turning point between non-sensory driven spontaneous networks and cortical network functioning. Despite its clinical importance, the underlying mechanisms responsible for this spontaneous nested activity and its functional role have not yet been determined. The coupling between neural oscillations at different timescales is a key feature of ongoing neural activity, the characteristics of which are determined by the network structure and dynamics. The underlying mechanisms of cross-frequency coupling (CFC) are associated with several putative functions in adults. In order to show that this generic mechanism is already in place early in the course of development, we analyzed electroencephalography recordings from sleeping preterm newborns (24-27 wGA). Employing cross-frequency phase-amplitude coupling analyses, we found that TTAs were orchestrated by the SWs defined by a precise temporal relationship. Notably, TTAs were synchronized to the SW trough, and were suppressed during the SW peak. Spontaneous endogenous TTA-SWs constitute one of the very early signatures of the developing temporal neural networks with key functions, such as language and communication. The presence of a fine-tuned relationship between the slow activity and the TTA in premature neonates emphasizes the complexity and relative maturity of the intimate mechanisms that shape the CFC, the disruption of which can have severe neurodevelopmental consequences.


Subject(s)
Brain Waves/physiology , Electroencephalography Phase Synchronization/physiology , Electroencephalography/methods , Infant, Extremely Premature/physiology , Nerve Net/physiology , Temporal Lobe/physiology , Electrocardiography , Electromyography , Female , Humans , Infant, Newborn , Male , Nerve Net/growth & development , Temporal Lobe/diagnostic imaging , Temporal Lobe/growth & development , Theta Rhythm/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...