Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 113(3): 1519-1527, 2020 06 06.
Article in English | MEDLINE | ID: mdl-31901160

ABSTRACT

This study evaluated the fumigant ethanedinitrile (EDN) against the cigarette beetle, Lasioderma serricorne, and phosphine-resistant and susceptible lesser grain borer, Rhyzopertha dominica, life stages under laboratory conditions. Eggs of both species were the most susceptible stage to EDN. EDN is, therefore, a promising alternative because eggs are generally tolerant to most common fumigants. Lasioderma serricorne eggs were the most susceptible with an LC50 estimated of 50.4 ppm, followed by adults, pupae and larvae with LC50 values of 160.2, 192.5, and 446.6 ppm, respectively, after 24-h exposure at 25°C. Eggs of phosphine-susceptible (LC50 = 11.2 ppm) and resistant (LC50 = 12.0 ppm) R. dominica strains were more susceptible to EDN than were adults of both strains, with LC50 values of 27.7 and 36.0 ppm, respectively. Lasioderma serricorne mixed life stage cultures were completely controlled at concentrations ≥2,000 ppm at 24 h. Fumigation with 600 ppm was enough to suppress adult emergence in the case of the phosphine-susceptible R. dominica strain (USDA), while an average of only 4.0 adults emerged from the phosphine-resistant R. dominica strain (Belle Glade) compared with 514.3 adults in the control. Lasioderma serricorne was more tolerant to EDN than both R. dominica strains. EDN caused 61.8 and 68.2 % inhibition of R. dominica (USDA) cytochrome c oxidase activity at concentrations of 0.0038 and 0.0076 mM in vitro, respectively, and it did not inhibit its activity in the case of an in vivo assay. These results suggest that cytochrome c oxidase may not be the main target for EDN toxicity.


Subject(s)
Coleoptera , Insecticides , Animals , Dominica , Fumigation , Insecticides/toxicity , Nitriles
2.
J Econ Entomol ; 112(3): 1011-1031, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30698784

ABSTRACT

The cigarette beetle, Lasioderma serricorne(F.) (Coleoptera: Anobiidae), is an important pest in the food and tobacco industry in many regions of the world. Despite a great deal of research, control of this pest still relies on the use of phosphine fumigation, which is becoming less effective as the insect develops resistance to this compound. In addition, series of other nonchemical methods used to control the insect have given mixed and irregular results. This review summarizes and discusses information on important aspects of the biology and ecology of the cigarette beetle, and its control. The topics covered include a taxonomic discussion of the cigarette beetle, which includes a discussion of other anobiid species of economic importance. The mating behavior of the insect and conditions favorable for pest development were described. The review also includes a discussion of the life stages of the insect, its feeding habit, and economic damage. Important aspects of its chemical ecology and a discussion on the association between this species and its microorganisms, and major natural enemies, were presented. A summary of its flight behavior, including the factors governing flight initiation and temporal and seasonal flight activity were reviewed. Finally, the control methods currently used in the management of the insect were described. The review also identifies potential areas of further research on L. serricorne and gives an analysis of the control methods worthy of further investigation in the search for practical and sustainable methods for the management of this pest.


Subject(s)
Coleoptera , Animals , Ecology , Fumigation
3.
J Econ Entomol ; 108(5): 2489-95, 2015 10.
Article in English | MEDLINE | ID: mdl-26453739

ABSTRACT

Lasioderma serricorne (F.) is a serious pest of stored products that is known to be resistant to the fumigant pesticide gas phosphine. This study investigated resistance in populations from the southeastern United States, and determined if a recommended treatment schedule could kill resistant insects. A laboratory assay for adult insects was developed that used a discriminating concentration of 50 ppm phosphine applied to insects for 20 h at 25°C followed by 7 d of recovery in air. Survivors were classified as resistant. L. serricorne from six different field populations associated with stored tobacco were surveyed with the assay and all had resistant individuals. Four populations had greater than 90% of their insects resistant. Two industry-recommended treatment schedules were evaluated in laboratory fumigations against mixed life stage cultures of the four most resistant populations: the first at 200 ppm for 4 d at 25°C for controlling phosphine-susceptible L. serricorne and the second at 600 ppm for 6 d at 25°C intended to control phosphine-resistant beetles. The four populations with the highest frequency of resistant individuals from the field sampling study were not controlled by the "normal" treatment intended for susceptible insects. The higher concentration treatment greatly reduced beetle progeny from mixed-stage colony jars, but there were substantial numbers of surviving adults from all four highly resistant populations that represented unacceptable levels of control.


Subject(s)
Coleoptera , Fumigation , Insecticides , Phosphines , Animals , Dose-Response Relationship, Drug , Fumigation/methods , Insecticide Resistance , Southeastern United States , Nicotiana
4.
Environ Entomol ; 39(3): 930-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20550808

ABSTRACT

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), a serious pest of stored cereal grains, is widely distributed and has been collected in different habitats in North America, such as those from agricultural and nonagricultural settings. Our objective was to study the dispersal distances and direction of dispersal by R. dominica after external marking using fluorescent powder, releasing marked beetles, and recapturing adults using pheromone traps in distinctively different ecological habitats, wooded sites and open grasslands, for 2 consecutive yr. The recapture rate of marked beetles ranged from 6 to 26% in both sites and was generally higher in the wooded site than the open field site for both years. There was a significant difference in dispersal distances between wooded and open sites. Mean dispersal distances in the wooded site ranged from 337 to 375 m, whereas in the open site, they varied from 261 to 333 m. Trap captures for both marked and feral beetles were related to the ambient temperature such that increase in trap captures occurred with increasing temperature. Significant differences were observed for directional movement of R. dominica in both sites and indicated that most beetles dispersed in the northwest direction. Correlation analyses showed that the relationship between numbers of marked-released-recaptured beetles significantly decreased with increasing trap distances. Understanding dispersal distances and directions provide insight to flight behavior of R. dominica and to the relationship between ecologically diverse breeding habitats. Knowledge of R. dominica habitat ecology outside of grain storage facilities may be useful in designing suitable management tactics to minimize the onset of infestations in grain storages.


Subject(s)
Coleoptera , Ecosystem , Animals , Locomotion , Oklahoma , Poaceae , Population Dynamics , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...