Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 197(1): 104-109, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37725389

ABSTRACT

Electronic nicotine delivery systems (ENDS) have been associated with a dramatic increase in youth becoming addicted to nicotine following decades-long decline in cigarette smoking uptake. The United States Food and Drug Administration, Center for Tobacco Products (FDA/CTP) is responsible for regulating devices and consumable materials associated with ENDS. State and federal regulations regarding flavoring compounds in ENDS liquids (e-liquids) may be circumvented when vendors market refillable reservoirs side-by-side with noncompliant e-liquids. This study investigated the effect of third-party refillable versus manufacturer-supplied single-use reservoirs on total particulate matter (TPM) and nicotine emissions. The maximum TPM yield per puff was 5.6 times higher for the third-party (Blankz) reservoir (12.4 mg/puff) in comparison with the manufacturer's (JUUL) reservoir (2.2 mg/puff), whereas the maximum TPM concentration was over 7 times higher for third party (0.200 mg/ml) versus manufacturer (0.028 mg/ml) pod. The third-party pod was tested with nicotine concentrations ranging from 0% to 4%. The mass ratio of nicotine present in the aerosol (mg Nic/mg TPM) was found to be approximately the same as the mass ratio of the e-liquid (mg Nic/mg e-liquid) for both pods and all 3 nicotine laden e-liquids tested. Toxicant exposure may increase when consumers use third-party pods with ENDS devices. Refillable reservoirs are a significant barrier to regulatory restrictions on potentially toxic additives to e-liquids. It is recommended FDA/CTP require emissions characterization of third-party reservoirs used with each ENDS they are compatible with and should be required to demonstrate no increased potential toxicant exposure in comparison with manufacturer-provided reservoirs.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Humans , Adolescent , United States , Nicotine , Aerosols , Particulate Matter , Flavoring Agents
2.
Microorganisms ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014041

ABSTRACT

The widespread use of plastics has led to their increasing presence in the environment and subsequent pollution. Some microorganisms degrade plastics in natural ecosystems and the associated metabolic pathways can be studied to understand the degradation mechanisms. Polystyrene (PS) is one of the more recalcitrant plastic polymers that is degraded by only a few bacteria. Exiguobacterium is a genus of Gram-positive poly-extremophilic bacteria known to degrade PS, thus being of biotechnological interest, but its biochemical mechanisms of degradation have not yet been elucidated. Based solely on genome annotation, we initially proposed PS degradation by Exiguobacterium sp. RIT 594 via depolymerization and epoxidation catalyzed by a ring epoxidase. However, Fourier transform infrared (FTIR) spectroscopy analysis revealed an increase of carboxyl and hydroxyl groups with biodegradation, as well as of unconjugated C-C double bonds, both consistent with dearomatization of the styrene ring. This excludes any aerobic pathways involving side chain epoxidation and/or hydroxylation. Subsequent experiments confirmed that molecular oxygen is critical to PS degradation by RIT 594 because degradation ceased under oxygen-deprived conditions. Our studies suggest that styrene breakdown by this bacterium occurs via the sequential action of two enzymes encoded in the genome: an orphan aromatic ring-cleaving dioxygenase and a hydrolase.

3.
Article in English | MEDLINE | ID: mdl-35206329

ABSTRACT

This study introduces and demonstrates a comprehensive, accurate, unbiased approach to robust quantitative comparison of electronic nicotine delivery systems (ENDS) appropriate for establishing substantial equivalence (or lack thereof) between inhaled nicotine products. The approach is demonstrated across a family of thirteen pen- and pod-style ENDS products. Methods employed consist of formulating a robust emissions surface regression model, quantifying the empirical accuracy of the model as applied to each product, evaluating relationships between product design characteristics and maximum emissions characteristics, and presenting results in formats useful to researchers, regulators, and consumers. Results provide a response surface to characterize emissions (total particulate matter and constituents thereof) from each ENDS appropriate for use in a computer model and for conducting quantitative exposure comparisons between products. Results demonstrate that emissions vary as a function of puff duration, flow rate, e-liquid composition, and device operating power. Further, results indicate that regulating design characteristics of ENDS devices and consumables may not achieve desired public health outcomes; it is more effective to regulate maximum permissible emissions directly. Three emissions outcome measures (yield per puff, mass concentration, and constituent mass ratio) are recommended for adoption as standard quantities for reporting by manufacturers and research laboratories. The approach provides a means of: (a) quantifying and comparing maximal emissions from ENDS products spanning their entire operating envelope, (b) comparative evaluation of ENDS devices and consumable design characteristics, and (c) establishing comparative equivalence of maximal emissions from ENDS. A consumer-oriented product emissions dashboard is proposed for comparative evaluation of ENDS exposure potential. Maximum achievable power dissipated in the coil of ENDS is identified as a potentially effective regulatory parameter.


Subject(s)
Electronic Nicotine Delivery Systems , Aerosols/analysis , Nicotine , Outcome Assessment, Health Care , Particulate Matter
4.
Front Public Health ; 9: 705099, 2021.
Article in English | MEDLINE | ID: mdl-34485231

ABSTRACT

Many Electronic Nicotine Delivery Systems (ENDS) employ integrated sensors to detect user puffing behavior and activate the heating coil to initiate aerosol generation. The minimum puff flow rate and duration at which the ENDS device begins to generate aerosol are important parameters in quantifying the viable operating envelope of the device and are essential to formulating a design of experiments for comprehensive emissions characterization. An accurate and unbiased method for quantifying the flow condition operating envelope of ENDS is needed to quantify product characteristics across research laboratories. This study reports an accurate, unbiased method for measuring the minimum and maximum aerosolization puff flow rate and duration of seven pod-style, four pen-style and two disposable ENDS. The minimum aerosolization flow rate ranged from 2.5 to 23 (mL/s) and the minimum aerosolization duration ranged from 0.5 to 1.0 (s) across the ENDS studied. The maximum aerosolization flow rate was defined to be when the onset of liquid aspiration was evident, at flow rates ranging from 50 to 88 (mL/s). Results are presented which provide preliminary estimates for the effective maximum aerosolization flow rate and duration envelope of each ENDS. The variation in operating envelope observed between ENDS products of differing design by various manufacturers has implications for development of standardized emissions testing protocols and data reporting required for regulatory approval of new products.


Subject(s)
Electronic Nicotine Delivery Systems , Vaping , Aerosols , Nicotine , Research Design
5.
Article in English | MEDLINE | ID: mdl-33924226

ABSTRACT

This work investigated the effects of manufacturing variations, including coil resistance and initial pod mass, on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples of pods were used until failure (where e-liquid was consumed, and coil resistance increased to high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass ranged between 0.89 to 1.14 [Ω], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime was µ (mean) = 158, σ (standard deviation) = 21.5 puffs. Total mass of e-liquid consumed until coil failure was µ = 1.93, σ = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods) was µ = 0.0123, σ = 0.0003 [g]. Coil lifetime and TPM yield per puff were not correlated with either variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod is an important factor in causing coil failure. Small bits of the degraded coil could be potentially introduced to the aerosol. This work suggests that further work is required to investigate the effect of e-liquid composition on coil lifetime and TPM yield per puff.


Subject(s)
Electronic Nicotine Delivery Systems , Aerosols , Commerce
6.
Article in English | MEDLINE | ID: mdl-32429116

ABSTRACT

Standardized topography protocols for testing cigarette emissions include the Federal Trade Commission/International Standard Organization (FTC/ISO), the Massachusetts Department of Health (MDPH), and Health Canada (HC). Data are lacking for how well these protocols represent actual use behavior. This study aims to compare puff protocol standards to actual use topography measured in natural environments across a range of cigarette brands. Current smokers between 18 and 65 years of age were recruited. Each participant was provided with a wPUM™ cigarette topography monitor and instructed to use the monitor with their usual brand cigarette ad libitum in their natural environment for one week. Monitors were tested for repeatability, and data were checked for quality and analyzed with the TAP™ topography analysis program. Data from n = 26 participants were analyzed. Puff flow rates ranged from 17.2 to 110.6 mL/s, with a mean (STD) of 40.4 (21.7) mL/s; durations from 0.7 to 3.1 s, with a mean (STD) of 1.5 ± 0.5 s; and volumes from 21.4 to 159.2 mL, with a mean (STD) of 54.9 (29.8) mL. Current topography standards were found to be insufficient to represent smoking across the wide range of real behaviors. These data suggest updated standards are needed such that emissions tests will provide meaningful risk assessments.


Subject(s)
Environment , Public Health , Smoking , Tobacco Products , Adolescent , Adult , Aged , Canada , Humans , Massachusetts , Middle Aged , Smoking/psychology , United States , United States Federal Trade Commission , Young Adult
7.
Tob Control ; 29(Suppl 2): s117-s122, 2020 02.
Article in English | MEDLINE | ID: mdl-31405893

ABSTRACT

OBJECTIVES: Puffing topographies of waterpipe users vary widely as does the puff-to-puff topography of an individual user. The aim of this study was to determine if puff duration and flow rate have an effect on the characteristics of the mainstream emission from waterpipes, including total particulate matter (TPM), mass ratio of nicotine and mass concentration of volatile carbonyls. METHODS: Puffing parameters were chosen to encompass a significant portion of the perimeter space observed from a natural environment study. Tested conditions were 150, 200 and 250 mL sec-1; each run at 2, 3.5 and 5 s durations; 25 s interpuff duration and ~100 puffs per session. Each session was run in quadruplicate using the Programmable Emissions System-2 (PES-2) emissions capture system under identical conditions. Particulate matter, for quantification of TPM and nicotine, was collected on filter pads every ~5 L of aerosol resulting in 6 to 25 samples per session. Volatile carbonyls were sampled using 2,4-Dinitrophenylhydrazine (DNPH)-coated silica. RESULTS: Mass concentration of TPM linearly decreased with increased flow rate, with no dependency on puff duration. Nicotine mass ratio was independent of topography, with average mass ratio of nicotine to TPM of 0.0027±0.0002 (mg/mg). The main carbonyls observed were acetaldehyde and formaldehyde. Puff duration increased emissions of some carbonyls (eg, formaldehyde) but not others (eg, acetaldehyde). CONCLUSIONS: The results presented here highlight that topographies influence the emissions generated from waterpipes including TPM, total nicotine and volatile carbonyls. For laboratory studies to be representative of user exposure, a range of topographies must be studied. Using a range of topographies within a controlled laboratory environment will better inform regulatory policy.


Subject(s)
Nicotine/analysis , Particulate Matter/analysis , Smoking Water Pipes , Water Pipe Smoking , Aldehydes/analysis , Humans
8.
Article in English | MEDLINE | ID: mdl-31877722

ABSTRACT

Usage of waterpipes is growing in popularity around the world. Limited waterpipe natural environment topography data reduces the ability of the research community to accurately assess emissions and user exposure to toxicants. A portable ergonomic waterpipe monitor was provided to study participants to use every time they smoked their own waterpipe during a one-week monitoring period in conjunction with their own choice shisha tobacco. Users provided demographic information and logged their product use to supplement electronic monitor data. A total of 44 prospective study participants were invited to an intake appointment following an on-line pre-screening survey. Of these, 34 individuals were invited to participate in the study and data for 24 individuals who completed all aspects of the 1-week monitoring protocol is presented. 7493 puffs were observed during 74 waterpipe sessions accumulating over 48 h of waterpipe usage. The 95% CI on mean puff flow rate, duration, volume and interval are presented, yielding grand means of 243 [mL/s], 3.5 [s], 850 [mL], and 28 [s] respectively. The middle 95% of puff flow rates ranged between 62 to 408 [mL/s], durations from 0.8 to 6.8 [s], and puff volumes from 87 to 1762 [mL]. A waterpipe emissions topography protocol consisting of 13 flow conditions is proposed to reflect 93% of the observed range of puff flow rate, puff duration and puff volume with representative inter-puff interval, cumulative session time and aerosol volumes.


Subject(s)
Environmental Monitoring/methods , Inhalation Exposure/analysis , Smoking Water Pipes/statistics & numerical data , Water Pipe Smoking , Adult , Female , Humans , Male , New York , Prospective Studies , Young Adult
9.
J Sci Food Agric ; 99(14): 6267-6277, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31259414

ABSTRACT

BACKGROUND: 2-Heptanone is a volatile liquid known to be effective in protecting honey bees from parasitic mite infestations in hives. The present study aimed to show that chemical derivatives of 2-heptanone would release the ketone for a significantly longer time than it takes for the pure ketone to evaporate and preferably for as long as two brood cycles of a honey bee (42 days). RESULTS: A liquid ketal of 2-heptanone with glycerol (Glyc-Ket) and solid ketals of the ketone with polyvinyl alcohol (PVAl-Ket), containing different amounts of the ketone, were synthesized. The fully resolved 1 H and 13 C nuclear magenetic resonance (NMR) spectra of the ketals are discussed. In the case of the polymer, differential scanning calorimetry (DSC) of a ketal was also compared with the unketalized polyvinyl alcohol. The length of time for which 2-heptanone was released by the ketals was determined by gas chromatography-mass spectrometry of the headspace. In the case of Glyc-Ket, the concentration of the 2-heptanone in the liquid phase was also monitored by 1 H NMR spectroscopy. The deketalization was pH dependent, ranging between 2.0 and 2.5 for Glyc-Ket and between 2.0 and 3.5 for PVAl-Ket. CONCLUSION: Under bee hive conditions, the release of 55 mmol 2-heptanone from Glyc-Ket lasted for 42 days, whereas the release of the ketone from the PVAl-Ket with a similar amount of the ketone lasted for 23 days, versus a maximum of 17 days for an equivalent amount of the pure ketone. These ketals therefore have the potential to be effective mite repellants for the protection of honey bees. © 2019 Society of Chemical Industry.


Subject(s)
Bees/physiology , Insect Repellents/pharmacology , Ketones/pharmacology , Mites/drug effects , Animals , Mites/growth & development
10.
Sci Rep ; 9(1): 8752, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217477

ABSTRACT

A framework describing the joint effect of user topography behavior and product characteristics of one exemplar device on the total particulate mass (TPM) and aerosol constituent yield delivered to a user is presented and validated against seven user-specific 'playback' emissions observations. A pen-style e-cig was used to collect emissions across puff flow rates and durations spanning the range observed in the natural environment. Emissions were analyzed with GC-MS and used to construct empirical correlations for TPM concentration and nicotine mass ratio. TPM concentration was demonstrated to depend upon both puff flow rate and duration, while nicotine mass ratio was not observed to be flow-dependent under the conditions presented. The empirical model for TPM and nicotine yield demonstrated agreement with experimental observations, with Pearson correlation coefficients of r = 0.79 and r = 0.86 respectively. The mass of TPM and nicotine delivered to the mouth of an e-cig user are dependent upon the puffing behavior of the user. Product-specific empirical models of emissions may be used in conjunction with participant-specific topography observations to accurately quantify the mass of TPM and nicotine delivered to a user.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine/analysis , Vaping , Aerosols , Humans
11.
PLoS One ; 13(11): e0206341, 2018.
Article in English | MEDLINE | ID: mdl-30395620

ABSTRACT

SIGNIFICANCE: Protocols for testing and reporting emissions of Harmful and Potentially Harmful Constituents (HPHCs) from electronic cigarettes (e-cigs) are lacking. The premise of this study is that multi-path relationships may be developed to describe interactions between product characteristics, use behavior and emissions to develop appropriate protocols for tobacco product regulatory compliance testing. METHODS: This study proposes a framework consisting of three component terms: HPHC mass concentration, HPHC mass ratio and total particulate mass (TPM) concentration. The framework informs experiments to investigate dependence of aerosol emissions from five electronic cigarettes spanning several design generations and three e-liquids for six repeated trials at each of ten flow conditions. RESULTS: Results are reported for TPM concentration as a function of flow conditions spanning the range of natural environment topography observed in prior studies. An empirical correlation describing TPM concentration as a function of flow conditions and coil power setting (6, 7.5 and 10 watts) for the Innokin iTaste MVP 2.0 vaporizer with Innokin iClear 30 dual coil tank is presented. Additional results document the impact of flow conditions and wick and coil design on TPM concentration through comparison of the Innokin iClear 30 (upper coil, capillary action wick) and the Innokin iClear X.I (lower coil, gravity fed wick) operated at 7.5 watts. The impact of e-liquid on TPM concentration is illustrated by comparing emissions from an NJOY Vape Pen filled with AVAIL Arctic Blast, Tobacco Row, and Mardi Gras e-liquids. TPM concentration is shown to depend upon flow conditions across a range of e-cigarette product designs including cig-a-like, pen-style, box-mod and emergent disposable-cartridge style devices. CONCLUSIONS: A framework provides a foundation for reporting emissions across a variety of e-cigs, e-liquids and research laboratories. The study demonstrates TPM concentration is a function of topography behavior (i.e. puff flow rate and puff duration) for varying device operating power and product characteristics.


Subject(s)
Aerosols/chemistry , Electronic Nicotine Delivery Systems/instrumentation , Equipment Design , Vaping
12.
Acc Chem Res ; 51(9): 2169-2178, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29771111

ABSTRACT

Acoustic cavitation (the growth, oscillation, and rapid collapse of bubbles in a liquid) occurs in all liquids irradiated with sufficient intensity of sound or ultrasound. The collapse of such bubbles creates local heating and provides a unique source of energy for driving chemical reactions. In addition to sonochemical bond scission and formation, cavitation also induces light emission in many liquids. This phenomenon of sonoluminescence (SL) has captured the imagination of many researchers since it was first observed 85 years ago. SL provides a direct probe of cavitation events and has provided most of our understanding of the conditions created inside collapsing bubbles. Spectroscopic analyses of SL from single acoustically levitated bubbles as well as from clouds of bubbles have revealed molecular, atomic, and ionic line and band emission riding atop an underlying continuum arising from radiative plasma processes. Application of spectrometric methods of pyrometry and plasma diagnostics to these spectra has permitted quantitative measurement of the intracavity conditions: relative peak intensities for temperature measurements, peak shifts and broadening for pressures, and peak asymmetries for plasma electron densities. The studies discussed herein have revealed that extraordinary conditions are generated inside the collapsing bubbles in ordinary room-temperature liquids: observable temperatures exceeding 15 000 K (i.e., three times the surface temperature of our sun), pressures of well over 1000 bar (more than the pressure at the bottom of the Mariana Trench), and heating and cooling rates in excess of 1012 K·s-1. Scientists from many disciplines, and even nonscientists, have been and continue to be intrigued by the consequences of dynamic bubbles in liquids. As chemists, we are fascinated by the high energy reactions and processes that occur during acoustic cavitation and by the use of SL as a spectroscopic probe of the events during cavitation. Within the chemical realm of SL and cavitation there are many interesting questions that are now answered but also many that remain to be explored, so we hope that this Account reveals to the reader some of the most fascinating of those curiosities as we explore the chemical history of a bubble. The high energy species produced inside collapsing bubbles also lead to secondary reactions from the high energy species created within the collapsing bubble diffusing into the bulk liquid and expanding the range of sonochemical reactions observed, especially in redox reactions relevant to nanomaterials synthesis. Bubbles near solid surfaces deform upon collapse, which lessens the internal heating within the bubble, as shown by SL studies, but introduces important mechanical consequences in terms of surface damage and increased surface reactivity. Our understanding of the conditions created during cavitation has informed the applications of ultrasound to a wide range of chemical applications, from nanomaterials to synthetically useful organic reactions to biomedical and pharmaceutical uses. Indeed, we echo Michael Faraday's observation concerning a candle flame, "There is not a law under which any part of this universe is governed which does not come into play and is touched upon in these phenomena." ( Faraday , M. The Chemical History of a Candle ; Harper & Brothers : New York , 1861 ).

13.
Article in English | MEDLINE | ID: mdl-29438289

ABSTRACT

This work investigates emissions sampling methods employed for qualitative identification of compounds in e-liquids and their resultant aerosols to assess what capture methods may be sufficient to identify harmful and potentially harmful constituents present. Three popular e-liquid flavors (cinnamon, mango, vanilla) were analyzed using qualitative gas chromatography-mass spectrometry (GC-MS) in the un-puffed state. Each liquid was also machine-puffed under realistic-use flow rate conditions and emissions were captured using two techniques: filter pads and methanol impingers. GC-MS analysis was conducted on the emissions captured using both techniques from all three e-liquids. The e-liquid GC-MS analysis resulted in positive identification of 13 compounds from the cinnamon flavor e-liquid, 31 from mango, and 19 from vanilla, including a number of compounds observed in all e-liquid experiments. Nineteen compounds were observed in emissions which were not present in the un-puffed e-liquid. Qualitative GC-MS analysis of the emissions samples identify compounds observed in all three samples: e-liquid, impinge, and filter pads, and each subset thereof. A limited number of compounds were observed in emissions captured with impingers, but were not observed in emissions captured using filter pads; a larger number of compounds were observed on emissions collected from the filter pads, but not those captured with impingers. It is demonstrated that sampling methods have different sampling efficiencies and some compounds might be missed using only one method. It is recommended to investigate filter pads, impingers, thermal desorption tubes, and solvent extraction resins to establish robust sampling methods for emissions testing of e-cigarette emissions.


Subject(s)
Electronic Nicotine Delivery Systems , Flavoring Agents/analysis , Gas Chromatography-Mass Spectrometry , Aerosols , Flavoring Agents/chemistry , Qualitative Research
14.
J Phys Chem A ; 120(18): 2868-76, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27082856

ABSTRACT

The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

15.
J Phys Chem A ; 119(8): 1279-91, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25621533

ABSTRACT

The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

16.
Ultrason Sonochem ; 18(4): 842-6, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21247788

ABSTRACT

We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ∼1600 to ∼9000K. The effective pressure during MBSL is ∼300bar, based on atomic line shifts. Given nanosecond emission times, this means that cooling rates are >10(12)K/s. In sulfuric and phosphoric acid, the low volatility and high solubility of any sonolysis products make bubble collapse more efficient and evidence for an optically opaque plasma core is found.

17.
J Phys Chem A ; 114(31): 8106-13, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684583

ABSTRACT

Epoxydiols are produced in the gas phase from the photo-oxidation of isoprene in the absence of significant mixing ratios of nitrogen oxides (NO(x)). The reactive uptake of these compounds onto acidic aerosols has been shown to produce secondary organic aerosol (SOA). To better characterize the fate of isoprene epoxydiols in the aerosol phase, the kinetics and products of the acid-catalyzed ring-opening reactions of four hydroxy-substituted epoxides were studied by nuclear magnetic resonance (NMR) techniques. Polyols and sulfate esters are observed from the ring-opening of the epoxides in solutions of H(2)SO(4)/Na(2)SO(4). Likewise, polyols and nitrate esters are produced in solutions of HNO(3)/NaNO(3). In sulfuric acid, the rate of acid-catalyzed ring-opening is dependent on hydronium ion activity, sulfate ion, and bisulfate. The rates are much slower than the nonhydroxylated equivalent epoxides; however, the hydroxyl groups make them much more water-soluble. A model was constructed with the major channels for epoxydiol loss (i.e., aerosol-phase ring-opening, gas-phase oxidation, and deposition). In the atmosphere, SOA formation from epoxydiols will depend on a number of variables (e.g., pH and aerosol water content) with the yield of ring-opening products varying from less than 1% to greater than 50%.

18.
Environ Sci Technol ; 44(12): 4590-6, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20476767

ABSTRACT

Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C(5)-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from approximately 1 to 24 ng m(-3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO(x) conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.


Subject(s)
Aerosols/analysis , Butadienes/analysis , Epoxy Compounds/analysis , Hemiterpenes/analysis , Pentanes/analysis , Aerosols/chemistry , Atmosphere/chemistry , Butadienes/chemistry , Epoxy Compounds/chemistry , Gas Chromatography-Mass Spectrometry , Gases/chemistry , Hemiterpenes/chemistry , Particulate Matter/analysis , Pentanes/chemistry , Southeastern United States
19.
Proc Natl Acad Sci U S A ; 107(15): 6640-5, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20080572

ABSTRACT

Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = beta-IEPOX + delta-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NO(x) conditions, respectively. Isoprene low-NO(x) SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NO(x) conditions, isoprene SOA formation occurs through oxidation of its second-generation product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NO(x) SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO(2) and NO(2), respectively) could be a substantial source of "missing urban SOA" not included in current atmospheric models.


Subject(s)
Aerosols/chemistry , Environmental Monitoring/methods , Oxygen/chemistry , Acids/chemistry , Atmosphere , Butadienes/chemistry , Gas Chromatography-Mass Spectrometry/methods , Hemiterpenes/chemistry , Light , Models, Chemical , Nitrates/chemistry , Pentanes/chemistry , Photochemistry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Sulfates/chemistry
20.
J Am Chem Soc ; 131(17): 6060-1, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19400590

ABSTRACT

Intense Na* emission was observed from 0.1 M Na(2)SO(4) in 95% sulfuric acid during multibubble sonoluminescence (MBSL). As a function of acoustic intensity, three different morphologies are observed for the cloud of light emitting bubbles. Even more strikingly, there is a spatial separation between blue-white emitting bubbles and orange emitting bubbles, easily observed by the naked eye. Surprisingly, no Na* emission was observed on the top of a bubble cloud (blue-white emission) while strong Na* emission predominates at the bottom. This observation provides the first experimental evidence to distinguish between the two types of two-site models of acoustic cavitation and MBSL: spatial separation of emission from nonvolatiles (e.g., Na*) ought not to be observed for the heated-shell model but is predicted from the injected droplet model.

SELECTION OF CITATIONS
SEARCH DETAIL
...