Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 20(4): 935-53, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20597281

ABSTRACT

Theory predicts that hybrid fitness should decrease as population divergence increases. This suggests that the effects of human-induced hybridization might be adequately predicted from the known divergence among parental populations. We tested this prediction by quantifying trait differentiation between multigenerational crosses of farmed Atlantic salmon (Salmo salar) and divergent wild populations from the Northwest Atlantic; the former escape repeatedly into the wild, while the latter are severely depleted. Under common environmental conditions and at the spatiotemporal scale considered (340 km, 12 000 years of divergence), substantial cross differentiation had a largely additive genetic basis at behavioral, life history, and morphological traits. Wild backcrossing did not completely restore hybrid trait distributions to presumably more optimal wild states. Consistent with theory, the degree to which hybrids deviated in absolute terms from their parental populations increased with increasing parental divergence (i.e., the collective environmental and life history differentiation, genetic divergence, and geographic distance between parents). Nevertheless, while these differences were predictable, their implications for risk assessment were not: wild populations that were equally divergent from farmed salmon in the total amount of divergence differed in the specific traits at which this divergence occurred. Combined with ecological data on the rate of farmed escapes and wild population trends, we thus suggest that the greatest utility of hybridization data for risk assessment may be through their incorporation into demographic modeling of the short- and long-term consequences to wild population persistence. In this regard, our work demonstrates that detailed hybridization data are essential to account for life-stage-specific changes in phenotype or fitness within divergent but interrelated groups of wild populations. The approach employed here will be relevant to risk assessments in a range of wild species where hybridization with domesticated relatives is a concern, especially where the conservation status of the wild species may preclude direct fitness comparisons in the wild.


Subject(s)
Animals, Wild , Body Size , Fisheries , Hybridization, Genetic , Salmo salar/genetics , Animals , Atlantic Ocean , Female , Humans , New Brunswick , Nova Scotia , Ovum/growth & development , Salmo salar/growth & development
2.
Evol Appl ; 1(3): 501-12, 2008 Aug.
Article in English | MEDLINE | ID: mdl-25567731

ABSTRACT

Interbreeding between artificially-selected and wild organisms can have negative fitness consequences for the latter. In the Northwest Atlantic, farmed Atlantic salmon recurrently escape into the wild and enter rivers where small, declining populations of wild salmon breed. Most farmed salmon in the region derive from an ancestral source population that occupies a nonacidified river (pH 6.0-6.5). Yet many wild populations with which escaped farmed salmon might interbreed inhabit acidified rivers (pH 4.6-5.2). Using common garden experimentation, and examining two early-life history stages across two generations of interbreeding, we showed that wild salmon populations inhabiting acidified rivers had higher survival at acidified pH than farmed salmon or F1 farmed-wild hybrids. In contrast, however, there was limited evidence for reduced performance in backcrosses, and F2 farmed-wild hybrids performed better or equally well to wild salmon. Wild salmon also survived or grew better at nonacidified than acidified pH, and wild and farmed salmon survived equally well at nonacidified pH. Thus, for acid tolerance and the stages examined, we found some evidence both for and against the theory that repeated farmed-wild interbreeding may reduce adaptive genetic variation in the wild and thereby negatively affect the persistence of depleted wild populations.

3.
Oecologia ; 153(3): 543-53, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17541646

ABSTRACT

Animals often exhibit accelerated or "compensatory" growth (CG) after periods of environmentally induced growth depression, raising important questions about how they cope with environmental variability. We tested an underexplored hypothesis regarding the evolutionary consequences of CG; namely, that natural populations differ in CG responses. Common-garden experiments were used to compare subadult growth following food restriction between groups (control, treatment) of two Atlantic salmon (Salmo salar) populations and their first-generation (F(1)) hybrids. The populations are found at similar latitudes but characterized by differences in migration distance. We predicted that long-distance migrants would better maintain growth trajectories following food restriction than short-distance migrants because they: (1) require larger body sizes to offset energetic costs of migration and (2) face greater time constraints for growth as they must leave non-breeding areas earlier to return to breeding areas. Long-distance migrants grew faster, achieved quicker CG (relative to controls), and their overall body morphology was more streamlined (a trait known to improve swimming efficiency) than slower growing short-distance migrants. F(1) hybrids were generally intermediate in "normal" growth, CG, and body morphology. We concluded that CG responses may differ considerably among populations and that the conditions generating them are likely interconnected with selection on a suite of other traits.


Subject(s)
Animal Migration/physiology , Salmo salar/physiology , Animals , Body Size , Ecosystem , Food Deprivation , Salmo salar/anatomy & histology , Salmo salar/growth & development , Time Factors
4.
Proc Biol Sci ; 274(1619): 1693-9, 2007 Jul 22.
Article in English | MEDLINE | ID: mdl-17490948

ABSTRACT

Neither the scale of adaptive variation nor the genetic basis for differential population responses to the environment is known for broadcast-spawning marine fishes. Using a common-garden experimental protocol, we document how larval growth, survival and their norms of reaction differ genetically among four populations of Atlantic cod (Gadus morhua). These traits, and their plastic responses to food and temperature, differed across spatial scales at which microsatellite DNA failed to detect population structure. Divergent survival reaction norms indicate that warm-water populations are more sensitive to changes in food, whereas cold-water populations are more sensitive to changes in temperature. Our results suggest that neither the direction nor the magnitude of demographic responses to environmental change need be the same among populations. Adaptive phenotypic plasticity, previously undocumented in marine fishes, can significantly influence the probability of recovery and persistence of collapsed populations by affecting their ability to respond to natural and anthropogenic environmental change.


Subject(s)
Acclimatization/genetics , Environment , Gadus morhua/growth & development , Gadus morhua/genetics , Genetic Variation , Phenotype , Analysis of Variance , Animals , Diet , Larva/growth & development , Microsatellite Repeats/genetics , Population Dynamics , Survival Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...