Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20876, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463244

ABSTRACT

Technology is playing an important role is healthcare particularly as it relates to disease prevention and detection. This is evident in the COVID-19 era as different technologies were deployed to test, detect and track patients and ensure COVID-19 protocol compliance. The White Spot Disease (WSD) is a very contagious disease caused by virus. It is widespread among shrimp farmers due to its mode of transmission and source. Considering the growing concern about the severity of the disease, this study provides a predictive model for diagnosis and detection of WSD among shrimp farmers using visualization and machine learning algorithms. The study made use of dataset from Mendeley repository. Machine learning algorithms; Random Forest classification and CHAID were applied for the study, while Python was used for implementation of algorithms and for visualization of results. The results achieved showed high prediction accuracy (98.28%) which is an indication of the suitability of the model for accurate prediction of the disease. The study would add to growing knowledge about use of technology to manage White Spot Disease among shrimp farmers and ensure real-time prediction during and post COVID-19.


Subject(s)
COVID-19 , Lichen Sclerosus et Atrophicus , Humans , Animals , Farmers , COVID-19/diagnosis , Crustacea , Seafood
2.
Front Public Health ; 10: 892371, 2022.
Article in English | MEDLINE | ID: mdl-35570979

ABSTRACT

Machine learning algorithms are excellent techniques to develop prediction models to enhance response and efficiency in the health sector. It is the greatest approach to avoid the spread of hepatitis C, especially injecting drugs, is to avoid these behaviors. Treatments for hepatitis C can cure most patients within 8 to 12 weeks, so being tested is critical. After examining multiple types of machine learning approaches to construct the classification models, we built an AI-based ensemble model for predicting Hepatitis C disease in patients with the capacity to predict advanced fibrosis by integrating clinical data and blood biomarkers. The dataset included a variety of factors related to Hepatitis C disease. The training data set was subjected to three machine-learning approaches and the validated data was then used to evaluate the ensemble learning-based prediction model. The results demonstrated that the proposed ensemble learning model has been observed ad more accurate compared to the existing Machine learning algorithms. The Multi-layer perceptron (MLP) technique was the most precise learning approach (94.1% accuracy). The Bayesian network was the second-most accurate learning algorithm (94.47% accuracy). The accuracy improved to the level of 95.59%. Hepatitis C has a significant frequency globally, and the disease's development can result in irreparable damage to the liver, as well as death. As a result, utilizing AI-based ensemble learning model for its prediction is advantageous in curbing the risks and improving treatment outcome. The study demonstrated that the use of ensemble model presents more precision or accuracy in predicting Hepatitis C disease instead of using individual algorithms. It also shows how an AI-based ensemble model could be used to diagnose Hepatitis C disease with greater accuracy.


Subject(s)
Artificial Intelligence , Hepatitis C , Bayes Theorem , Hepatitis C/diagnosis , Humans , Machine Learning , Neural Networks, Computer
3.
Front Public Health ; 10: 829519, 2022.
Article in English | MEDLINE | ID: mdl-35433625

ABSTRACT

Diabetes is considered to be one of the leading causes of death globally. If diabetes is not treated and detected early, it can lead to a variety of complications. The aim of this study was to develop a model that can accurately predict the likelihood of developing diabetes in patients with the greatest amount of precision. Classification algorithms are widely used in the medical field to classify data into different categories based on some criteria that are relatively restrictive to the individual classifier, Therefore, four machine learning classification algorithms, namely supervised learning algorithms (Random forest, SVM and Naïve Bayes, Decision Tree DT) and unsupervised learning algorithm (k-means), have been a technique that was utilized in this investigation to identify diabetes in its early stages. The experiments are per-formed on two databases, one extracted from the Frankfurt Hospital in Germany and the other from the database. PIMA Indian Diabetes (PIDD) provided by the UCI machine learning repository. The results obtained from the database extracted from Frankfurt Hospital, Germany, showed that the random forest algorithm outperformed with the highest accuracy of 97.6%, and the results obtained from the Pima Indian database showed that the SVM algorithm outperformed with the highest accuracy of 83.1% compared to other algorithms. The validity of these results is confirmed by the process of separating the data set into two parts: a training set and a test set, which is described below. The training set is used to develop the model's capabilities. The test set is used to put the model through its paces and determine its correctness.


Subject(s)
Diabetes Mellitus , Potassium Iodide , Algorithms , Bayes Theorem , Humans , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...