Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Front Med (Lausanne) ; 8: 716944, 2021.
Article in English | MEDLINE | ID: mdl-34926484

ABSTRACT

Objective: ST-segment Elevation Myocardial Infarction (STEMI) occurs as a result of acute occlusion of the coronary artery. Despite successful reperfusion using percutaneous coronary intervention (PCI), a large percentage of myocardial cells die after reperfusion which is recognized as ischemia/reperfusion injury (I/R). Oxidized phosphatidylcholines (OxPCs) are a group of oxidized lipids generated through non-enzymatic oxidation and have pro-inflammatory properties. This study aimed to examine the roles of OxPCs in a clinical setting of myocardial I/R. Methods: Blood samples were collected from STEMI patients at presentation prior to primary PCI (PPCI) (Isch) and at 4 time-points post-PPCI, including 2 h (R-2 h), 24 h (R-24 h), 48 h (R-48 h), and 30 days (R-30 d) post-PPCI. As controls, blood samples were collected from patients with non-obstructive coronary artery disease after diagnostic coronary angiography. Aspiration thrombectomy was also performed in selected STEMI patients. High-performance lipid chromatography-electrospray mass spectrometry (LC-MS/MS) was used for OxPCs analysis. Results: Twenty-two distinct OxPC species were identified and quantified in plasma samples in patients presenting with STEMI. These compounds were categorized as fragmented and non-fragmented species. Total levels of OxPCs did not significantly differ between Isch and control groups. However, total levels of fragmented OxPCs increased significantly in the ischemic period compared with controls (Isch: 4.79 ± 0.94, Control: 1.69 ± 0.19 ng/µl of plasma, P < 0.05). Concentrations of non-fragmented OxPCs had significant reductions during ischemia compared to the control group (Isch: 4.84 ± 0.30, Control: 6.6 ± 0.51 ng/µl, P < 0.05). Levels of total OxPCs in patients with STEMI were not significantly different during reperfusion periods. However, fragmented OxPCs levels were elevated at 48 h post-reperfusion and decreased at 30 days following MI, when compared to R-2 h and R-24 h time points (Isch: 4.79 ± 0.94, R-2 h: 5.33 ± 1.17, R-24 h: 5.20 ± 1.1, R-48 h: 4.18 ± 1.07, R-30 d: 1.87 ± 0.31 ng/µl, P < 0.05). Plasma levels of two fragmented OxPCs, namely, POVPC and PONPC were significantly correlated with peak creatine kinase (CK) levels (P < 0.05). As with plasma levels, the dominant OxPC species in coronary aspirated thrombus were fragmented OxPCs, which constituted 77% of total OxPC concentrations. Conclusion: Biologically active fragmented OxPC were elevated in patients presenting with STEMI when compared to controls. PONPC concentrations were subsequently increased after PPCI resulting in reperfusion. Moreover, levels of POVPC and PONPC were also associated with peak CK levels. Since these molecules are potent stimulators for cardiomyocyte cell death, therapeutics attenuating their activities can result in a novel therapeutic pathway for myocardial salvage for patients undergoing reperfusion therapy.

2.
PLoS One ; 16(2): e0246592, 2021.
Article in English | MEDLINE | ID: mdl-33571313

ABSTRACT

BACKGROUND: Repetitive Transcranial Magnetic Stimulation [rTMS] is increasingly being used to treat Major Depressive Disorder [MDD]. Given that not all patients respond to rTMS, it would be clinically useful to have reliable biomarkers that predict treatment response. Oxidized phosphatidylcholine [OxPC] and some oxylipins are important plasma biomarkers of oxidative stress and inflammation. Not only is depression associated with oxidative stress, but rTMS has been shown to have anti-oxidative effects. OBJECTIVES: To investigate whether plasma oxolipidomics profiles could predict treatment response in patients with treatment resistant MDD. METHODS: Fourty-eight patients undergoing rTMS treatment for MDD were recruited along with nine healthy control subjects. Plasma OxPCs and oxylipins were extracted and analyzed through high performance liquid chromatography coupled with mass spectrometry. Patients with a Hamilton Depression Rating Scale score [Ham-D] ≤7 post-treatment were defined as having entered remission. RESULTS: Fifty-seven OxPC and 32 oxylipin species were identified in our subjects. MDD patients who entered remission following rTMS had significantly higher pre-rTMS levels of total and fragmented OxPCs compared to non-remitters and controls [one-way ANOVA, p<0.05]. However, no significant changes in OxPC levels were found as a result of rTMS, regardless of treatment response [p>0.05]. No differences in plasma oxylipins were found between remitters and non-remitters at baseline. CONCLUSION: Certain categories of OxPCs may be useful predictive biomarkers for response to rTMS treatment in MDD. Given that elevated oxidized lipids may indicate higher levels of oxidative stress and inflammation in the brain, patients with this phenotype of depression may be more receptive to rTMS treatment.


Subject(s)
Depressive Disorder, Major/blood , Oxidative Stress , Oxylipins/blood , Phosphatidylcholines/blood , Transcranial Magnetic Stimulation , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/therapy , Female , Humans , Male , Middle Aged , Treatment Outcome
3.
Am J Physiol Heart Circ Physiol ; 320(3): H1170-H1184, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33513080

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.


Subject(s)
Ferroptosis/drug effects , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Phosphatidylcholines/toxicity , Animals , Calcium Signaling/drug effects , Cells, Cultured , Energy Metabolism/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidation-Reduction , Phospholipid Ethers/toxicity , Rats, Sprague-Dawley
4.
J Nutr ; 150(9): 2353-2363, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32510147

ABSTRACT

BACKGROUND: Although the combination of doxorubicin (DOX) and trastuzumab (TRZ) reduces the progression and recurrence of breast cancer, these anticancer drugs are associated with significant cardiotoxic side effects. OBJECTIVE: We investigated whether prophylactic administration of flaxseed (FLX) and its bioactive components, α-linolenic acid (ALA) and secoisolariciresinol diglucoside (SDG), would be cardioprotective against DOX + TRZ-mediated cardiotoxicity in a chronic in vivo female murine model. METHODS: Wild-type C57BL/6 female mice (10-12 wk old) received daily prophylactic treatment with one of the following diets: 1) regular control (RC) semi-purified diet; 2) 10% FLX diet; 3) 4.4% ALA diet; or 4) 0.44% SDG diet for a total of 6 wks. Within each arm, mice received 3 weekly injections of 0.9% saline or a combination of DOX [8 mg/(kg.wk)] and TRZ [3 mg/(kg.wk)] starting at the end of week 3. The main outcome was to evaluate the effects of FLX, ALA, and SDG on cardiovascular remodeling and markers of apoptosis, inflammation, and mitochondrial dysfunction. Significance between measurements was determined using a 4 (diet) × 2 (chemotherapy) × 2 (time) mixed factorial design with repeated measures. RESULTS: In the RC + DOX + TRZ-treated mice at week 6 of the study, the left ventricular ejection fraction (LVEF) decreased by 50% compared with the baseline LVEF (P < 0.05). However, the prophylactic administration of the FLX, ALA, or SDG diet was partially cardioprotective, with mice in these treatment groups showing an ∼68% increase in LVEF compared with the RC + DOX + TRZ-treated group at week 6 (P < 0.05). Although markers of inflammation (nuclear transcription factor κB), apoptosis [poly (ADP-ribose) polymerase-1 and the ratio of BCL2-associated X protein to B-cell lymphoma-extra large], and mitochondrial dysfunction (BCL2-interacting protein 3) were significantly elevated by approximately 2-fold following treatment with RC + DOX + TRZ compared with treatment with RC + saline at week 6, prophylactic administration of FLX, ALA, or SDG partially downregulated these signaling pathways. CONCLUSION: In a chronic in vivo female C57BL/6 mouse model of DOX + TRZ-mediated cardiotoxicity, FLX, ALA, and SDG were partially cardioprotective.


Subject(s)
Dietary Supplements , Doxorubicin/adverse effects , Flax , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Trastuzumab/adverse effects , Animals , Antineoplastic Agents/adverse effects , Cardiotoxicity , Female , Mice , Mice, Inbred C57BL , Ventricular Function, Left
5.
JACC Basic Transl Sci ; 5(12): 1163-1177, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426374

ABSTRACT

This study outlines the first step toward creating the metabolite atlas of human calcified aortic valves by identifying the expression of metabolites and metabolic pathways involved at various stages of calcific aortic valve stenosis progression. Untargeted analysis identified 72 metabolites and lipids that were significantly altered (p < 0.01) across different stages of disease progression. Of these metabolites and lipids, the levels of lysophosphatidic acid were shown to correlate with faster hemodynamic progression and could select patients at risk for faster progression rate.

6.
Atherosclerosis ; 288: 101-111, 2019 09.
Article in English | MEDLINE | ID: mdl-31352271

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is usually the underlying cause of heart attacks, strokes and peripheral vascular diseases - collectively known as cardiovascular diseases. Oxidation of low density lipoprotein (LDL) and its lipid content has an important role in the formation of lipid-laden atherosclerotic plaques. Not much is known about the impact of oxidative stress on bioactive oxylipin molecules present in LDL. The aim of this study is to understand the changes in oxylipin molecules present in LDL characterized by varying degrees of LDL oxidation. METHODS: LDL was isolated from the pooled plasma of healthy normolipidemic volunteers and was subjected to in vitro copper-catalyzed oxidation for varying time intervals (0 h, 6 h, 12 h, 24 h and 30 h). At each time interval, oxylipins were isolated through solid phase extraction and quantified using a targeted LC/-MS/MS approach employing stable isotope dilution method. RESULTS: Our results demonstrate that different forms of oxidized LDL (OxLDL) are characterized by specific oxylipin distribution and concentration. Compared to non-oxidized LDL, there is a significant increase in oxylipin generation (p ≤ 0.05) in OxLDL subjected to 12 h and 24 h of oxidation. Though linoleate derived oxylipins are the most abundant in OxLDL extracts, the concentration of particular oxylipin species differed with different degrees of oxidation. Specifically, two pro-inflammatory linoleate-derived triols, namely 9,10,13-triHOME and 9,12,13-triHOME, exhibited a concentration increase of ~25 fold in 12h-OxLDL compared to non-oxidized LDL. Moreover, Partial least squares Discriminant Analysis (PLS-DA) identified 10 oxylipins, primarily prostaglandins, which could serve as additional biomarkers for oxidative stress or cardiovascular risk assessment. CONCLUSIONS: Our data suggests that oxidative stress induces profound changes in the oxylipin content of LDL and the pattern of change is based on the extent of oxidation.


Subject(s)
Inflammation Mediators/blood , Lipoproteins, LDL/blood , Oxidative Stress , Oxylipins/blood , Adolescent , Adult , Biomarkers/blood , Chromatography, High Pressure Liquid , Copper Sulfate/chemistry , Female , Healthy Volunteers , Humans , Lipidomics , Male , Oxidation-Reduction , Tandem Mass Spectrometry , Young Adult
7.
Chem Biol Interact ; 303: 35-39, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-30707978

ABSTRACT

Doxorubicin (Dox), a widely used chemotherapy drug, can also cause cardiotoxic effects leading to heart failure. The excessive oxidative stress caused by Dox results in the modification of a variety of cellular molecules, including phospholipids. In cardiomyocytes, Dox increases oxidation of a species of phospholipids, phosphatidylcholine, which has been associated with increased cell death. Oxidized phospholipids (Ox-PL) are involved in development and progression of various pathologies, including atherosclerosis, thrombosis, and tissue inflammation. Moreover, Ox-PL and excess iron are associated with ferroptosis, a form of regulated cell death. Neutralizing Ox-PL increases resistance to ischemia-reperfusion injuries which is linked to preservation of the mitochondrial membrane potential. This review aims to discuss the potential role of Ox-PL in Dox-induced pathology and supports the notion that a better understanding of the field could point to new strategies to prevent cardiotoxicity.


Subject(s)
Cardiotoxicity/etiology , Doxorubicin/adverse effects , Phospholipids/metabolism , Animals , Humans , Oxidation-Reduction , Phospholipids/physiology
8.
Cardiovasc Res ; 115(1): 179-189, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29850765

ABSTRACT

Aims: Myocardial ischaemia followed by reperfusion (IR) causes an oxidative burst resulting in cellular dysfunction. Little is known about the impact of oxidative stress on cardiomyocyte lipids and their role in cardiac cell death. Our goal was to identify oxidized phosphatidylcholine-containing phospholipids (OxPL) generated during IR, and to determine their impact on cell viability and myocardial infarct size. Methods and results: OxPL were quantitated in isolated rat cardiomyocytes using mass spectrophotometry following 24 h of IR. Cardiomyocyte cell death was quantitated following exogenously added OxPL and in the absence or presence of E06, a 'natural' murine monoclonal antibody that binds to the PC headgroup of OxPL. The impact of OxPL on mitochondria in cardiomyocytes was also determined using cell fractionation and Bnip expression. Transgenic Ldlr-/- mice, overexpressing a single-chain variable fragment of E06 (Ldlr-/--E06-scFv-Tg) were used to assess the effect of inactivating endogenously generated OxPL in vivo on myocardial infarct size. Following IR in vitro, isolated rat cardiomyocytes showed a significant increase in the specific OxPLs PONPC, POVPC, PAzPC, and PGPC (P < 0.05 to P < 0.001 for all). Exogenously added OxPLs resulted in significant death of rat cardiomyocytes, an effect inhibited by E06 (percent cell death with added POVPC was 22.6 ± 4.14% and with PONPC was 25.3 ± 3.4% compared to 8.0 ± 1.6% and 6.4 ± 1.0%, respectively, with the addition of E06, P < 0.05 for both). IR increased mitochondrial content of OxPL in rat cardiomyocytes and also increased expression of Bcl-2 death protein 3 (Bnip3), which was inhibited in presence of E06. Notably cardiomyocytes with Bnip3 knock-down were protected against cytotoxic effects of OxPL. In mice exposed to myocardial IR in vivo, compared to Ldlr-/- mice, Ldlr-/--E06-scFv-Tg mice had significantly smaller myocardial infarct size normalized to area at risk (72.4 ± 21.9% vs. 47.7 ± 17.6%, P = 0.023). Conclusions: OxPL are generated within cardiomyocytes during IR and have detrimental effects on cardiomyocyte viability. Inactivation of OxPL in vivo results in a reduction of infarct size.


Subject(s)
Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Phospholipids/metabolism , Single-Chain Antibodies/metabolism , Animals , Cell Death , Cells, Cultured , Disease Models, Animal , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Oxidation-Reduction , Rats, Sprague-Dawley , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Single-Chain Antibodies/genetics
9.
Am J Physiol Heart Circ Physiol ; 316(3): H446-H458, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30499710

ABSTRACT

Although anticancer systemic therapy agents clearly lead to improved survival in patients with cancer, these can come at the cost of serious complications including cardiotoxicity. Two types of targeted systemic therapies currently in use for colorectal cancer (CRC) and renal cell cancer (RCC), respectively, include the vascular endothelial growth factor inhibitor bevacizumab (BVZ) and the tyrosine kinase inhibitor sunitinib (SNT). Despite the beneficial effects of BVZ and SNT in improving clinical outcomes in the settings of CRC and RCC, there is an increased risk of cardiac dysfunction. The aim of the present study was to determine whether prophylactic administration of renin-angiotensin system (RAS) inhibitors would attenuate the cardiotoxic side effects of BVZ or SNT in a chronic in vivo murine model. A total of 194 wild-type C57Bl/6 male mice received: 1) 0.9% saline, 2) BVZ (10 mg·kg-1·wk-1), or 3) SNT (40 mg·kg-1·day-1) for 4 wk. Within each arm, mice received daily prophylactic treatment with hydralazine (0.05 mg/ml), aliskiren (50 mg/kg), perindopril (4 mg/kg), or valsartan (2 mg/kg). Although hydralazine effectively lowered blood pressure in BVZ- or SNT-treated mice, it did not prevent left ventricular systolic dysfunction. Prophylactic administration of aliskiren, perindopril, or valsartan prevented adverse cardiovascular remodeling in mice treated with either BVZ or SNT. The addition of RAS antagonists also downregulated expression of phosphorylated p38 and Bcl-2-like 19-kDa interacting protein 3 in SNT-treated mice. In our chronic in vivo murine model, RAS antagonists partially attenuated the development of BVZ- or SNT-mediated cardiac dysfunction. Future clinical studies are warranted to investigate the cardioprotective effects of prophylactic treatment with RAS inhibitors in the settings of CRC and RCC. NEW & NOTEWORTHY In the evolving field of cardio-oncology, bevacizumab and sunitinib improve clinical outcomes in the settings of metastatic colorectal cancer and renal cell cancer, respectively. These anticancer drugs, however, are associated with an increased risk of cardiotoxicity. The prophylactic administration of renin-angiotensin system antagonists is partially cardioprotective against bevacizumab- and sunitinib-mediated cardiac dysfunction.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Antihypertensive Agents/therapeutic use , Antineoplastic Agents/toxicity , Renin-Angiotensin System , Ventricular Dysfunction/prevention & control , Amides/administration & dosage , Amides/therapeutic use , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Bevacizumab/toxicity , Cardiotoxicity , Fumarates/administration & dosage , Fumarates/therapeutic use , Hydralazine/administration & dosage , Hydralazine/therapeutic use , Male , Mice , Mice, Inbred C57BL , Perindopril/administration & dosage , Perindopril/therapeutic use , Sunitinib/toxicity , Valsartan/administration & dosage , Valsartan/therapeutic use , Ventricular Dysfunction/drug therapy , Ventricular Dysfunction/etiology
10.
Cell Tissue Res ; 374(3): 607-617, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30159756

ABSTRACT

Doxorubicin (Dox)-induced cardiotoxicity, a limiting factor in the use of Dox to treat cancer, can be mitigated by the mitogenic factor FGF2 in vitro, via a heme oxygenase 1 (HO-1)-dependent pathway. HO-1 upregulation was reported to require protein kinase CK2 activity. We show that a mutant non-mitogenic FGF2 (S117A-FGF2), which does not activate CK2, is cardioprotective against acute cardiac ischemic injury. We now investigate the potential of S117A-FGF2 to protect cardiomyocytes against acute Dox injury and decrease Dox-induced upregulation of oxidized phospholipids. The roles of CK2 and HO-1 in cardiomyocyte protection are also addressed.Rat neonatal cardiomyocyte cultures were used as an established in vitro model of acute Dox toxicity. Pretreatment with S117A-FGF2 protected against Dox-induced: oxidative stress; upregulation of fragmented and non-fragmented oxidized phosphatidylcholine species, measured by LC/MS/MS; and cardiomyocyte injury and cell death measured by LDH release and a live-dead assay. CK2 inhibitors (TBB and Ellagic acid), did not affect protection by S117A-FGF2 but prevented protection by mitogenic FGF2. Furthermore, protection by S117A-FGF2, unlike that of FGF2, was not prevented by HO-1 inhibitors and S117A-FGF2 did not upregulate HO-1. Protection by S117A-FGF2 required the activity of FGF receptor 1 and ERK.We conclude that mitogenic and non-mitogenic FGF2 protect from acute Dox toxicity by common (FGFR1) and distinct, CK2/HO-1- dependent or CK2/HO-1-independent (respectively), pathways. Non-mitogenic FGF2 merits further consideration as a preventative treatment against Dox cardiotoxicity.


Subject(s)
Cardiotonic Agents/pharmacology , Casein Kinase II/metabolism , Cytoprotection/drug effects , Doxorubicin/toxicity , Fibroblast Growth Factor 2/pharmacology , Heme Oxygenase-1/metabolism , Myocytes, Cardiac/pathology , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Models, Biological , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Phospholipids/metabolism , Rats , Reactive Oxygen Species/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction
11.
PLoS One ; 13(4): e0195172, 2018.
Article in English | MEDLINE | ID: mdl-29684044

ABSTRACT

BACKGROUND: The aim of this study was to determine the individual oxidized phosphatidylcholine (OxPC) molecules generated during renal ischemia/ reperfusion (I/R) injury. METHODS: Kidney ischemia was induced in male Sprague-Dawley rats by clamping the left renal pedicle for 45 min followed by reperfusion for either 6h or 24h. Kidney tissue was subjected to lipid extraction. Phospholipids and OxPC species were identified and quantitated using liquid chromatography coupled to electrospray ionization tandem mass spectrometry using internal standards. RESULT: We identified fifty-five distinct OxPC in rat kidney following I/R injury. These included a variety of fragmented (aldehyde and carboxylic acid containing species) and non-fragmented products. 1-stearoyl-2-linoleoyl-phosphatidylcholine (SLPC-OH), which is a non-fragmented OxPC and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PAzPC), which is a fragmented OxPC, were the most abundant OxPC species after 6h and 24 h I/R respectively. Total fragmented aldehyde OxPC were significantly higher in 6h and 24h I/R groups compared to sham operated groups (P = 0.03, 0.001 respectively). Moreover, levels of aldehyde OxPC at 24h I/R were significantly greater than those in 6h I/R (P = 0.007). Fragmented carboxylic acid increased significantly in 24h I/R group compared with sham and 6h I/R groups (P = 0.001, 0.001). Moreover, levels of fragmented OxPC were significantly correlated with creatinine levels (r = 0.885, P = 0.001). Among non-fragmented OxPC, only isoprostanes were elevated significantly in 6h I/R group compared with sham group but not in 24h I/R group (P = 0.01). No significant changes were observed in other non-fragmented OxPC including long chain products and terminal furans. CONCLUSION: We have shown for the first time that bioactive OxPC species are produced in renal I/R and their levels increase with increasing time of reperfusion in a kidney model of I/R and correlate with severity of I/R injury. Given the pathological activity of fragmented OxPCs, therapies focused on their reduction may be a mechanism to attenuate renal I/R injury.


Subject(s)
Acute Kidney Injury/metabolism , Phosphatidylcholines/metabolism , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Animals , Chromatography, High Pressure Liquid , Kidney/chemistry , Kidney/metabolism , Kidney/pathology , Male , Mass Spectrometry , Oxidation-Reduction , Phosphatidylcholines/analysis , Rats , Rats, Sprague-Dawley , Reperfusion Injury/complications , Reperfusion Injury/pathology
12.
JACC Basic Transl Sci ; 2(3): 229-240, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29147686

ABSTRACT

The LPA gene is the only monogenetic risk factor for calcific aortic valve stenosis (CAVS). Oxidized phospholipids (OxPL) and lysophosphatidic acid generated by autotaxin (ATX) from OxPL are pro-inflammatory. Aortic valve leaflets were categorized pathologically from Both ATX-apoB and ATX-apo(a) were measureable in plasma. Lp(a), autotaxin, OxPL and MDA epitopes progressively increased in immunostaining (p<0.001 for all). Six species of OxPL and LysoPA were identified following extraction from valve leaflets. The presence of a constellation of pathologically-linked, Lp(a)-associated molecules in plasma and in aortic valve leaflets of patients with CAVS suggest that Lp(a) is a key etiological factor in CAVS.

13.
Lipids ; 52(1): 11-26, 2017 01.
Article in English | MEDLINE | ID: mdl-27914034

ABSTRACT

Oxidized low-density lipoprotein (OxLDL) plays an important role in initiation and progression of atherosclerosis. Proatherogenic effects of OxLDL have been attributed to bioactive phospholipids generated during LDL oxidation. It is unknown what effect oxidation has on the phosphatidylinositol (PtdIns) molecules in LDL, even though PtdIns is 6% of the total LDL phospholipid pool. We sought to identify and quantitate oxidized phosphatidylinositol (OxPtdIns) species in OxLDL and human atherosclerotic plaque. Bovine liver PtdIns was subjected to non-enzymatic and lipoxygenase-catalyzed oxidation. Reversed-phase liquid chromatography with negative ESI-MS identified and confirmed compounds by fragmentation pattern analysis from which an OxPtdIns library was generated. Twenty-three OxPtdIns molecules were identified in copper-oxidized human LDL at 0, 6, 12, 24, 30, and 48 h, and in human atherosclerotic plaque. In OxLDL, OxPtdIns species containing aldehydes and carboxylates comprised 17.3 ± 0.1 and 0.9 ± 0.2%, respectively, of total OxPtdIns in OxLDL at 48 h. Hydroperoxides and isoprostanes at 24 h (68.5 ± 0.2 and 22.8 ± 0.2%) were significantly greater than 12 h (P < 0.01) without additional changes thereafter. Hydroxides decreased with increased oxidation achieving a minimum at 24 h (5.2 ± 0.3%). Human atherosclerotic plaques contained OxPtdIns species including aldehydes, carboxylates, hydroxides, hydroperoxides and isoprostanes, comprising 18.6 ± 4.7, 1.5 ± 0.7, 16.5 ± 7.4, 33.3 ± 1.1 and 30.2 ± 3.3% of total OxPtdIns compounds. This is the first identification of OxPtdIns molecules in human OxLDL and atherosclerotic plaque. With these novel molecules identified we can now investigate their potential role in atherosclerosis.


Subject(s)
Lipoproteins, LDL/metabolism , Lipoxygenase/metabolism , Liver/metabolism , Phosphatidylinositols/analysis , Plaque, Atherosclerotic/chemistry , Aldehydes/analysis , Animals , Carboxylic Acids/analysis , Cattle , Chromatography, Reverse-Phase/methods , Copper/chemistry , Humans , Phosphatidylinositols/chemistry
14.
J Nutr Biochem ; 31: 60-6, 2016 05.
Article in English | MEDLINE | ID: mdl-27133424

ABSTRACT

Dietary trans-fats are strongly associated with heart disease. However, the capacity for the tissues of the body, and specifically the heart, to take up trans-fats is unknown. It is also unknown if different trans-fats have different uptake capacities in the heart and other tissues of the body. Diets of low-density lipoprotein receptor-deficient mice were supplemented for 14weeks with foods that contained 1.5% of the trans-fat elaidic acid or vaccenic acid. Tissues were extracted and frozen in liquid nitrogen, and then lipids were analyzed by gas chromatography for fatty acid content. Isolated cardiomyocytes were also exposed to elaidic or vaccenic acid in cell culture media for 24h. Dietary supplementation with vaccenic or elaidic acid resulted in a 20-fold higher accumulation of these TFAs in fat deposits in the body in comparison to liver. Liver tissue accumulated about twice as much per gram tissue as heart. Similar quantities of both elaidic acid and vaccenic acid were taken up by the tissues. Isolated cardiomyocytes exhibited an unusually large uptake of trans-fat, and this was dependent upon both the concentration and duration of exposure to the trans-fats but not upon the type of trans-fat. Expression levels of CD36 and FATP4 were not significantly changed during dietary interventions or exposure of cells to trans-fats. We conclude that fat, liver and heart (including cardiomyocytes) are all capable of accumulating trans-fat in response to dietary supplementation without changes in fatty acid transport protein expression.


Subject(s)
Myocardium/metabolism , Ruminants , Trans Fatty Acids/metabolism , Animals , Chromatography, Gas , Culture Media , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics
15.
J Food Sci ; 81(5): S1230-42, 2016 May.
Article in English | MEDLINE | ID: mdl-26990186

ABSTRACT

Pulses are known to be nutritious foods but are susceptible to oxidation due to the reaction of lipoxygenase (LOX) with linolenic and linoleic acids which can lead to off flavors caused by the formation of volatile organic compounds (VOCs). Infrared micronization at 130 and 150 °C was investigated as a heat treatment to determine its effect on LOX activity and VOCs of chickpea and green lentil flour. The pulse flours were added to low-fat beef burgers at 6% and measured for consumer acceptability and physicochemical properties. Micronization at 130 °C significantly decreased LOX activity for both flours. The lentil flour micronized at 150 °C showed a further significant decrease in LOX activity similar to that of the chickpea flour at 150 °C. The lowering of VOCs was accomplished more successfully with micronization at 130 °C for chickpea flour while micronization at 150 °C for the green lentil flour was more effective. Micronization minimally affected the characteristic fatty acid content in each flour but significantly increased omega-3 and n-6 fatty acids at 150 °C in burgers with lentil and chickpea flours, respectively. Burgers with green lentil flour micronized at 130 and 150 °C, and chickpea flour micronized at 150 °C were positively associated with acceptability. Micronization did not affect the shear force and cooking losses of the burgers made with both flours. Formulation of low-fat beef burgers containing 6% micronized gluten-free binder made from lentil and chickpea flour is possible based on favorable results for physicochemical properties and consumer acceptability.


Subject(s)
Cicer , Hot Temperature , Lens Plant , Lipoxygenase/metabolism , Meat Products/analysis , Taste , Volatile Organic Compounds/analysis , Animals , Cattle , Consumer Behavior , Cooking , Diet, Gluten-Free , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/analysis , Flour/analysis , Food Additives/analysis , Food Handling/methods , Humans , Lipid Peroxidation , Red Meat , Seeds
16.
Eur J Nutr ; 55(2): 651-663, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25808116

ABSTRACT

PURPOSE: The primary endpoint was to determine the plasma concentration of alpha-linolenic acid (ALA), and its metabolites, following milled flaxseed consumption at four doses. Secondary outcomes focused on plasma enterolignan concentrations and the effects on tolerability, platelet aggregation, plasma lipids and urinary thromboxane levels. METHODS: Healthy, younger adults (n = 34; 18-49 years old) were randomized into four groups consuming one muffin daily for 30 days fortified with 10, 20, 30 or 40 g of milled flaxseed. Blood and urine were collected at baseline and 4 weeks. RESULTS: Plasma ALA concentrations increased with all flaxseed doses (P < 0.01), except the 20 g/day dose (P = 0.10), yet there was no significant dose-dependent response (P = 0.81). Only with the 30 g/day diet were n-3 polyunsaturated fatty acids (P = 0.007), and eicosapentaenoic acid (EPA) (P = 0.047) increased from baseline values. Docosapentaenoic acid and docosahexaenoic acid were not detected at any dose. Plasma total enterolignan concentrations significantly increased over time in all treatment groups, yet despite a dose-dependent tendency, no between-group differences were detected (P = 0.22). Flaxseed was well tolerated, even at the highest dose, as there were no reported adverse events, changes in cholesterol, platelet aggregation or urinary 11-dehydro-thromboxane B2. CONCLUSIONS: In healthy, younger adults, 10 g/day of milled flaxseed consumption is sufficient to significantly increase circulating ALA and total enterolignan concentrations; however, 30 g/day is required to convert ALA to EPA. Although all doses were well tolerated, 40 g/day is too low to attenuate cholesterol in this population.


Subject(s)
Butylene Glycols/blood , Flax/chemistry , Glucosides/blood , Plant Preparations/administration & dosage , Seeds/chemistry , alpha-Linolenic Acid/blood , Adolescent , Adult , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Fatty Acids, Unsaturated/blood , Female , Humans , Male , Middle Aged , Platelet Aggregation/drug effects , Thromboxane B2/analogs & derivatives , Thromboxane B2/urine , Triglycerides/blood , Young Adult
18.
J Nutr ; 145(4): 749-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25694068

ABSTRACT

BACKGROUND: Dietary flaxseed lowers cholesterol in healthy subjects with mild biomarkers of cardiovascular disease (CVD). OBJECTIVE: The aim was to investigate the effects of dietary flaxseed on plasma cholesterol in a patient population with clinically significant CVD and in those administered cholesterol-lowering medications (CLMs), primarily statins. METHODS: This double-blind, randomized, placebo-controlled trial examined the effects of a diet supplemented for 12 mo with foods that contained either 30 g of milled flaxseed [milled flaxseed treatment (FX) group; n = 58] or 30 g of whole wheat [placebo (PL) group; n = 52] in a patient population with peripheral artery disease (PAD). Plasma lipids were measured at 0, 1, 6, and 12 mo. RESULTS: Dietary flaxseed in PAD patients resulted in a 15% reduction in circulating LDL cholesterol as early as 1 mo into the trial (P = 0.05). The concentration in the FX group (2.1 ± 0.10 mmol/L) tended to be less than in the PL group (2.5 ± 0.2 mmol/L) at 6 mo (P = 0.12), but not at 12 mo (P = 0.33). Total cholesterol also tended to be lower in the FX group than in the PL group at 1 mo (11%, P = 0.05) and 6 mo (11%, P = 0.07), but not at 12 mo (P = 0.24). In a subgroup of patients taking flaxseed and CLM (n = 36), LDL-cholesterol concentrations were lowered by 8.5% ± 3.0% compared with baseline after 12 mo. This differed from the PL + CLM subgroup (n = 26), which increased by 3.0% ± 4.4% (P = 0.030) to a final concentration of 2.2 ± 0.1 mmol/L. CONCLUSIONS: Milled flaxseed lowers total and LDL cholesterol in patients with PAD and has additional LDL-cholesterol-lowering capabilities when used in conjunction with CLMs. This trial was registered at clinicaltrials.gov as NCT00781950.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Flax/chemistry , Peripheral Arterial Disease/drug therapy , Phytotherapy , Adult , Diet , Double-Blind Method , Endpoint Determination , Female , Humans , Male , Plant Preparations/pharmacology , Platelet Aggregation/drug effects , Seeds/chemistry , Triglycerides/blood
19.
Curr Hypertens Rep ; 16(12): 499, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25342643

ABSTRACT

Hypertension is the single largest risk factor attributed to mortality in the world. Medications are the primary treatment for hypertension; however, adherence to drug regimens is low (~50 %). Low adherence may be a contributing factor leading to uncontrolled blood pressure in patients. An effective alternative or complement to medications in managing hypertension is through lifestyle modifications. Adopting a healthy diet is a valuable strategy. A recent, randomized controlled year-long trial observed impressive reductions in blood pressure in patients with hypertension consuming flaxseed daily. Therefore, attention has been garnered for flaxseed as a potentially valuable strategy for the management of hypertension. This review will highlight the recent data for flaxseed and its extracts in blood pressure regulation in both animal models and clinical trials. Insight into the proposed anti-hypertensive mechanism of flaxseed and the implications of flaxseed as a potential global anti-hypertensive therapy will be discussed.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Flax , Hypertension/drug therapy , Life Style , Animals , Blood Pressure Determination/methods , Flax/metabolism , Humans
20.
Hypertension ; 62(6): 1081-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126178

ABSTRACT

Flaxseed contains ω-3 fatty acids, lignans, and fiber that together may provide benefits to patients with cardiovascular disease. Animal work identified that patients with peripheral artery disease may particularly benefit from dietary supplementation with flaxseed. Hypertension is commonly associated with peripheral artery disease. The purpose of the study was to examine the effects of daily ingestion of flaxseed on systolic (SBP) and diastolic blood pressure (DBP) in peripheral artery disease patients. In this prospective, double-blinded, placebo-controlled, randomized trial, patients (110 in total) ingested a variety of foods that contained 30 g of milled flaxseed or placebo each day over 6 months. Plasma levels of the ω-3 fatty acid α-linolenic acid and enterolignans increased 2- to 50-fold in the flaxseed-fed group but did not increase significantly in the placebo group. Patient body weights were not significantly different between the 2 groups at any time. SBP was ≈ 10 mm Hg lower, and DBP was ≈ 7 mm Hg lower in the flaxseed group compared with placebo after 6 months. Patients who entered the trial with a SBP ≥ 140 mm Hg at baseline obtained a significant reduction of 15 mm Hg in SBP and 7 mm Hg in DBP from flaxseed ingestion. The antihypertensive effect was achieved selectively in hypertensive patients. Circulating α-linolenic acid levels correlated with SBP and DBP, and lignan levels correlated with changes in DBP. In summary, flaxseed induced one of the most potent antihypertensive effects achieved by a dietary intervention.


Subject(s)
Antihypertensive Agents/therapeutic use , Flax , Hypertension/drug therapy , Phytotherapy , Plant Preparations/therapeutic use , Seeds , Aged , Aged, 80 and over , Blood Pressure/drug effects , Diet , Double-Blind Method , Female , Humans , Hypertension/blood , Male , Middle Aged , Plant Preparations/pharmacology , Treatment Outcome , alpha-Linolenic Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...