Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(12): eaat3672, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30588488

ABSTRACT

Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below T M = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin rotation (µSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The µSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites, which are randomly distributed in the lattice at the subpercent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9 to 2.8 µB. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and open a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.

2.
Nano Lett ; 17(3): 1616-1622, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28145719

ABSTRACT

MoTe2 is an exfoliable transition metal dichalcogenide (TMD) that crystallizes in three symmetries: the semiconducting trigonal-prismatic 2H- or α-phase, the semimetallic and monoclinic 1T'- or ß-phase, and the semimetallic orthorhombic γ-structure. The 2H-phase displays a band gap of ∼1 eV making it appealing for flexible and transparent optoelectronics. The γ-phase is predicted to possess unique topological properties that might lead to topologically protected nondissipative transport channels. Recently, it was argued that it is possible to locally induce phase-transformations in TMDs, through chemical doping, local heating, or electric-field to achieve ohmic contacts or to induce useful functionalities such as electronic phase-change memory elements. The combination of semiconducting and topological elements based upon the same compound might produce a new generation of high performance, low dissipation optoelectronic elements. Here, we show that it is possible to engineer the phases of MoTe2 through W substitution by unveiling the phase-diagram of the Mo1-xWxTe2 solid solution, which displays a semiconducting to semimetallic transition as a function of x. We find that a small critical W concentration xc ∼ 8% stabilizes the γ-phase at room temperature. This suggests that crystals with x close to xc might be particularly susceptible to phase transformations induced by an external perturbation, for example, an electric field. Photoemission spectroscopy, indicates that the γ-phase possesses a Fermi surface akin to that of WTe2.

3.
Altern Ther Health Med ; 6(6): 18, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11076442
6.
Second Opin ; 20(1): 20-33, 1994 Jul.
Article in English | MEDLINE | ID: mdl-10136509

ABSTRACT

Alternative healing is an idea whose time has come, and 1993 was the critical year for that recognition. So believes internist David Edelberg, founder of the Chicago Holistic Center. There patients can see one of four allopathic physicians as well as practitioners in 37 additional therapies, including acupuncture, infant massage, homeopathy, nutrition counseling, and Ayurvedic medicine.


Subject(s)
Complementary Therapies , Holistic Health , Ambulatory Care Facilities , Chicago , Group Practice/organization & administration , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...