Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 38(11): 1169-77, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14648824

ABSTRACT

A variety of dibenzyl esters and ethers undergo a rearrangement process upon isobutane chemical ionization and collision-induced dissociation of their MH(+) ions, whereby a new bond is formed between the two benzyl groups, giving rise to abundant [C(14)H(13)](+) (m/z 181) ions. This rearrangement has been explained as an intramolecular electrophilic substitution in the gas phase occurring in an ion-neutral complex formed by the cleavage of one of the benzyl-oxygen bonds. A similar highly efficient intramolecular electrophilic substitution takes place in di-alpha- and beta-naphthylmethyl adipates affording m/z 281 [C(22)H(17)](+) ions, but not in the sterically hindered di-9-anthracylmethyl adipate. An analogous efficient rearrangement occurs in benzyl alpha- and beta-naphthylmethylcyclohexane-1,4-dicarboxylates and in benzyl alpha- and beta-phenylethylcyclohexane-1,4-dimethanol ethers. The analogous rearrangement is much less efficient in benzylallyl, benzylpropargyl and benzyl-9-anthracylmethyl derivatives, even less in benzylisopropyl and benzylacetyl analogs, and it is absent in benzyltetrahydropyranyl derivatives. The distinctive behavior of the protonated difunctional benzyl derivatives is interpreted in terms of the energy requirements of the O-R bond heterolysis of the protonated functionalities, the ability of the neutral R' groups (non-dissociated from the oxygen atom) to play the role of the nucleophile in the intramolecular electrophilic substitution processes and the electrophilicity of the R(+) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...