Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38842701

ABSTRACT

RATIONALE: Motivational dysfunctions related to effort exertion are common in psychiatric disorders. Dopamine systems regulate exertion of effort and effort-based choice in humans and rodents. OBJECTIVES: Previous rodent studies mainly employed male rats, and it is imperative to conduct studies in male and female rats. METHODS: The present studies compared the effort-related effects of IP injections of the dopamine antagonists ecopipam and haloperidol, and the vesicular monoamine transport-2 inhibitor tetrabenazine (TBZ), in male and female rats using the fixed ratio 5/chow feeding choice task. RESULTS: Ecopipam (0.05-0.2 mg/kg) and haloperidol (0.05-0.15 mg/kg) induced a low-effort bias, decreasing lever pressing and increasing chow intake in males and females in the same dose range. With lever pressing, there was a modest but significant dose x sex interaction after ecopipam injection, but there was no significant interaction after administration of haloperidol. In the first study with TBZ (0.25-1.0 mg/kg), there was a robust sex difference. TBZ shifted choice from lever pressing to chow intake in male rats, but was ineffective in females. In a second experiment, 2.0 mg/kg affected choice behavior in both males and females. TBZ increased accumbens c-Fos immunoreactivity in a sex-dependent manner, with males significantly increasing at 1.0 mg/kg, while females showed augmented immunoreactivity at 2.0 mg/kg. CONCLUSIONS: The neural and behavioral effects of TBZ differed across sexes, emphasizing the importance of conducting studies in male and female rats. This research has implications for understanding the effort-related motivational dysfunctions seen in psychopathology.

2.
Neuropsychopharmacology ; 49(8): 1309-1317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38429498

ABSTRACT

People with depression and other neuropsychiatric disorders can experience motivational dysfunctions such as fatigue and anergia, which involve reduced exertion of effort in goal-directed activity. To model effort-related motivational dysfunction, effort-based choice tasks can be used, in which rats can select between obtaining a preferred reinforcer by high exertion of effort vs. a low effort/less preferred option. Preclinical data indicate that dopamine transport (DAT) inhibitors can reverse pharmacologically-induced low-effort biases and increase selection of high-effort options in effort-based choice tasks. Although classical DAT blockers like cocaine can produce undesirable effects such as liability for misuse and psychotic reactions, not all DAT inhibitors have the same neurochemical profile. The current study characterized the effort-related effects of novel DAT inhibitors that are modafinil analogs and have a range of binding profiles and neurochemical actions (JJC8-088, JJC8-089, RDS3-094, and JJC8-091) by using two different effort-related choice behavior tasks in male Sprague-Dawley rats. JJC8-088, JJC8-089, and RDS3-094 significantly reversed the low-effort bias induced by the VMAT-2 inhibitor tetrabenazine, increasing selection of high-effort fixed ratio 5 lever pressing vs. chow intake. In addition, JJC8-089 reversed the effects of tetrabenazine in female rats. JJC8-088 and JJC8-089 also increased selection of high-effort progressive ratio responding in a choice task. However, JJC8-091 failed to produce these outcomes, potentially due to its unique pharmacological profile (i.e., binding to an occluded conformation of DAT). Assessment of a broad range of DAT inhibitors with different neurochemical characteristics may lead to the identification of compounds that are useful for treating motivational dysfunction in humans.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Motivation , Rats, Sprague-Dawley , Animals , Motivation/drug effects , Motivation/physiology , Male , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Female , Rats , Choice Behavior/drug effects , Choice Behavior/physiology , Modafinil/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Conditioning, Operant/drug effects , Benzhydryl Compounds/pharmacology
3.
Psychopharmacology (Berl) ; 240(10): 2173-2185, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37615683

ABSTRACT

RATIONALE: Long-acting antipsychotics such as haloperidol decanoate are becoming more commonly used. Long-acting depot formulations have several advantages, but secondary negative effects of prolonged delivery, including motivational dysfunctions, could have debilitating effects. Assessing the behavioral changes that emerge during chronic antipsychotic administration in rats could provide insight regarding the development of motivational dysfunctions and drug tolerance. OBJECTIVES: Acute administration of dopamine D2 antagonists such as haloperidol induce motivational deficits in rats, as marked by a shift towards a low-effort bias during effort-based choice tasks. In the present studies, programmable subcutaneous infusion pumps provided continuous and controlled drug delivery of haloperidol. Animals were assessed using a fixed ratio (FR) 5 lever pressing schedule and the FR5/chow feeding test of effort-based choice. The adenosine A2A antagonist istradefylline was studied for its ability to reverse the effects of chronic haloperidol. RESULTS: Continuous chronic infusions of haloperidol produced significant reductions in FR5 performance and a shift from lever pressing to chow intake in rats tested on FR5/chow feeding choice, with no evidence of tolerance over the 4-week infusion period. Behavior returned to baseline during the vehicle-infusion washout period. Istradefylline significantly reversed the effects of haloperidol, increasing lever pressing and decreasing chow intake in haloperidol-treated rats. CONCLUSIONS: These studies provide an important behavioral characterization of the effects of chronically infused haloperidol, and demonstrate that A2A antagonism reverses the effects of chronic haloperidol. This research could contribute to the understanding and treatment of motivational dysfunctions seen in schizophrenia, Parkinson's disease, and other disorders involving dopamine.


Subject(s)
Antipsychotic Agents , Haloperidol , Animals , Rats , Haloperidol/pharmacology , Antipsychotic Agents/pharmacology , Purines , Adenosine
4.
Psychopharmacology (Berl) ; 240(8): 1747-1757, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37358806

ABSTRACT

RATIONALE: Cariprazine is an atypical antipsychotic that acts as a D3/D2 receptor partial agonist. In addition to treating positive symptoms of schizophrenia, cariprazine may have utility for treating negative symptoms. Rodent studies have focused on the effects of cariprazine on cognitive functions and behaviors thought to be related to anhedonia. Avolition, which is characterized by reduced initiation and persistence of goal-directed behavior, is another important negative symptom. OBJECTIVES: Effort-related choice tasks have been used as animal models of avolition. In these studies, cariprazine was assessed for its effects on effort-based choice in both rats and mice. Previous work has shown that D2 antagonists such as haloperidol and eticlopride produce a low-effort bias in rodents tested on effort-based choice tasks. RESULTS: Low doses of cariprazine produced a low-effort bias in rats tested on the fixed ratio 5/chow feeding choice task, decreasing lever pressing for high carbohydrate pellets but increasing chow intake. Cariprazine did not alter preference or intake of these foods in free-feeding tests. The effort-related effects of cariprazine were reversed by co-administration of the adenosine A2A antagonist istradefylline, and cariprazine failed to reverse the effort-related effects of the dopamine-depleting agent tetrabenazine. In mouse touchscreen choice tests, low doses of cariprazine also produced a low-effort bias, shifting behavior away from panel pressing. CONCLUSIONS: These results demonstrate that with these rodent models of avolition, cariprazine appears to act like a D2-family antagonist even at very low doses. Furthermore, the pharmacological regulation of avolition may differ from that of other negative symptoms.


Subject(s)
Antipsychotic Agents , Rats , Mice , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dopamine Agonists/pharmacology , Dopamine/pharmacology , Rats, Sprague-Dawley , Choice Behavior
5.
J Exp Anal Behav ; 117(3): 331-345, 2022 05.
Article in English | MEDLINE | ID: mdl-35344599

ABSTRACT

The dopamine-depleting agent tetrabenazine alters effort-based choice, suppressing food-reinforced behaviors with high response requirements, while increasing selection of low-cost options. In the present experiments, rats were tested on a concurrent fixed ratio 5/chow feeding choice task, in which high-carbohydrate Bio-serv pellets reinforced lever pressing and lab chow was concurrently available. Detailed timing of lever pressing was monitored with an event recording system, and the temporal characteristics of operant behavior seen after 1.0 mg/kg tetrabenazine or vehicle injections were analyzed. Tetrabenazine shifted choice, decreasing lever pressing but increasing chow intake. There was a small effect on the interresponse-time distribution within ratios, but marked increases in the total duration of pauses in responding. The postreinforcement-pause (PRP) distribution was bimodal, but tetrabenazine did not increase the duration of PRPs. Tetrabenazine increased time feeding and duration and number of feeding bouts, but did not affect feeding rate or total time spent lever pressing for pellets and consuming chow. Thus, TBZ appears to predominantly affect the relative allocation of lever pressing versus chow, with little alteration in consummatory motor acts involved in chow intake. Tetrabenazine is used to model motivational symptoms in psychopathology, and these effects in rats could have implications for psychiatric research.


Subject(s)
Dopamine , Tetrabenazine , Animals , Choice Behavior , Conditioning, Operant , Feeding Behavior , Rats , Rats, Sprague-Dawley , Tetrabenazine/pharmacology
6.
Brain Res Bull ; 182: 57-66, 2022 05.
Article in English | MEDLINE | ID: mdl-35151797

ABSTRACT

Instrumental behavior is a very complex and multifaceted process. Behavioral output during instrumental performance is influenced by a variety of factors, including associative conditioning, directional and activational aspects of motivation, affect, action selection and execution, and decision-making functions. Detailed assessments of instrumental behavior can focus on the temporal characteristics of instrumental behavior such as local frequency and response duration, and biophysical measures of response topography such as force output over time. Furthermore, engaging in motivated behavior can require exertion of effort and effort-based decision making. The present review provides an overview of research on the specific deficits in operant behavior induced by dopamine antagonism and depletion. Furthermore, it discusses research on effort-based decision making, and highlights the complexities and seeming paradoxes that are revealed when detailed analyses of operant behavior are conducted, and instrumental behavior is put in the context of factors such as primary or unconditioned food reinforcement, appetite, binge-like eating, and response choice. Although impairments in mesolimbic dopamine are sometimes labeled as being due to "anhedonia", a detailed deconstruction of the findings in this area of research point to a much more complex and nuanced picture of the role that dopamine plays in regulating instrumental behavior. Low doses of DA antagonists and accumbens dopamine depletions blunt the exertion of physical effort as measured by several different challenges in animal studies (e.g., lever pressing, barrier climbing, wheel running), and yet leave fundamental aspects of hedonic reactivity, food motivation, and reinforcement intact. Continued research on the specific features of instrumental behaviors that regulate the sensitivity to impaired dopamine transmission across a number of contexts is important for resolving some of the complexities that are evident in this area of inquiry. These investigations can also provide insights into psychomotor and motivational dysfunctions that are seen in neuropsychiatric conditions such as depression, schizophrenia, and Parkinson's disease.


Subject(s)
Anhedonia , Motivation , Animals , Dopamine , Motor Activity , Physical Exertion
SELECTION OF CITATIONS
SEARCH DETAIL
...