Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Ther ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959896

ABSTRACT

Bispecific antibodies are an important tool for the management and treatment of acute leukemias. As a next step toward clinical translation of engineered plasma cells, we describe approaches for secretion of bispecific antibodies by human plasma cells. We show that human plasma cells expressing either fragment crystallizable domain-deficient anti-CD19 × anti-CD3 (blinatumomab) or anti-CD33 × anti-CD3 bispecific antibodies mediate T cell activation and direct T cell killing of B acute lymphoblastic leukemia or acute myeloid leukemia cell lines in vitro. We demonstrate that knockout of the self-expressed antigen, CD19, boosts anti-CD19-bispecific secretion by plasma cells and prevents self-targeting. Plasma cells secreting anti-CD19-bispecific antibodies elicited in vivo control of acute lymphoblastic leukemia patient-derived xenografts in immunodeficient mice co-engrafted with autologous T cells. In these studies, we found that leukemic control elicited by engineered plasma cells was similar to CD19-targeted chimeric antigen receptor-expressing T cells. Finally, the steady-state concentration of anti-CD19 bispecifics in serum 1 month after cell delivery and tumor eradication was comparable with that observed in patients treated with a steady-state infusion of blinatumomab. These findings support further development of ePCs for use as a durable delivery system for the treatment of acute leukemias, and potentially other cancers.

3.
Biochem Pharmacol ; 206: 115285, 2022 12.
Article in English | MEDLINE | ID: mdl-36241097

ABSTRACT

B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing
5.
Nat Commun ; 12(1): 3908, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162850

ABSTRACT

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, "AsCas12a Ultra", that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.


Subject(s)
Acidaminococcus/enzymology , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , Gene Editing/methods , Acidaminococcus/genetics , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Cells, Cultured , Endonucleases/genetics , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Jurkat Cells , Killer Cells, Natural/metabolism , Reproducibility of Results , T-Lymphocytes/metabolism
6.
J Control Release ; 326: 106-119, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32569705

ABSTRACT

The gut microbiome is a promising target for the development of GI tract therapies, yet it has been under-exploited due, in part, to a lack of tools to control and manipulate complex microbial communities. To date, the most common approach in harnessing bacteria for therapeutic purposes has been to deliver ex vivo engineered bacteria-effectively taking a bacterial cell therapy-based approach. An alternative approach involves taking advantage of the rich microbial ecosystem in the gut by genetically modifying the microbiome in situ through the use of engineered bacteriophages-akin to human gene therapies delivered by viral vectors. In this review, we present the challenges and opportunities associated with engineering bacteriophages to control and manipulate the gut microbiome.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Microbiota , Bacteria , Humans
7.
Nano Lett ; 18(2): 1139-1144, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29297690

ABSTRACT

Nanoparticles have shown promise in several biomedical applications, including drug delivery and medical imaging; however, quantitative prediction of nanoparticle formation processes that scale from laboratory to commercial production has been lacking. Flash NanoPrecipitation (FNP) is a scalable technique to form highly loaded, block copolymer protected nanoparticles. Here, the FNP process is shown to strictly obey diffusion-limited aggregation assembly kinetics, and the parameters that control the nanoparticle size and the polymer brush density on the nanoparticle surface are shown. The particle size, ranging from 40 to 200 nm, is insensitive to the molecular weight and chemical composition of the hydrophobic encapsulated material, which is shown to be a consequence of the diffusion-limited growth kinetics. In a simple model derived from these kinetics, a single constant describes the 46 unique nanoparticle formulations produced here. The polymer brush densities on the nanoparticle surface are weakly dependent on the process parameters and are among the densest reported in the literature. Though modest differences in brush densities are observed, there is no measurable difference in the amount of protein adsorbed within this range. This work highlights the material-independent and universal nature of the Flash NanoPrecipitation process, allowing for the rapid translation of formulations to different stabilizing polymers and therapeutic loads.

8.
Nat Commun ; 8(1): 833, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018239

ABSTRACT

Biopolymeric matrices can impede transport of nanoparticulates and pathogens by entropic or direct adhesive interactions, or by harnessing "third-party" molecular anchors to crosslink nanoparticulates to matrix constituents. The trapping potency of anchors is dictated by association rates and affinities to both nanoparticulates and matrix; the popular dogma is that long-lived, high-affinity bonds to both species facilitate optimal trapping. Here we present a contrasting paradigm combining experimental evidence (using IgG antibodies and Matrigel®), a theoretical framework (based on multiple timescale analysis), and computational modeling. Anchors that bind and unbind rapidly from matrix accumulate on nanoparticulates much more quickly than anchors that form high-affinity, long-lived bonds with matrix, leading to markedly greater trapping potency of multiple invading species without saturating matrix trapping capacity. Our results provide a blueprint for engineering molecular anchors with finely tuned affinities to effectively enhance the barrier properties of biogels against diverse nanoparticulate species.Biological polymeric matrices often use molecular anchors, such as antibodies, to trap nanoparticulates. Here, the authors find that anchor-matrix bonds that are weak and short-lived confer superior trapping potency, contrary to the prevailing belief that effective molecular anchors should form strong bonds to both the matrix and the nanoparticulates.


Subject(s)
Collagen/chemistry , Immunoglobulin G/chemistry , Laminin/chemistry , Models, Theoretical , Nanoparticles/chemistry , Proteoglycans/chemistry , Adhesives/chemistry , Avidin/chemistry , Biomechanical Phenomena , Diffusion , Drug Combinations , Monte Carlo Method , Polyethylene Glycols/chemistry
9.
Anal Chem ; 88(23): 11804-11812, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27804292

ABSTRACT

Circulating antibodies (Ab) that specifically bind polyethylene glycol (PEG), a biocompatible polymer routinely used in protein and nanoparticle therapeutics, have been associated with reduced efficacy of and/or adverse reactions to therapeutics modified with or containing PEG. Unlike most antidrug antibodies that are induced following initial drug dosing, anti-PEG Ab can be found in treatment-naïve individuals (i.e., individuals who have never undergone treatment with PEGylated drugs but most likely have been exposed to PEG through other means). Unfortunately, the true prevalence, quantitative levels, and Ab isotype of pre-existing anti-PEG Ab remain poorly understood. Here, using rigorously validated competitive ELISAs with engineered chimeric anti-PEG monoclonal Ab standards, we quantified the levels of anti-PEG IgM and different subclasses of anti-PEG IgG (IgG1-4) in both contemporary and historical human samples. We unexpectedly found, with 90% confidence, detectable levels of anti-PEG Ab in ∼72% of the contemporary specimens (18% IgG, 25% IgM, 30% both IgG and IgM). The vast majority of these samples contained low levels of anti-PEG Ab, with only ∼7% and ∼1% of all specimens possessing anti-PEG IgG and IgM in excess of 500 ng/mL, respectively. IgG2 was the predominant anti-PEG IgG subclass. Anti-PEG Ab's were also observed in ∼56% of serum samples collected during 1970-1999 (20% IgG, 19% IgM, and 16% both IgG and IgM), suggesting that the presence of PEG-specific antibodies may be a longstanding phenomenon. Anti-PEG IgG levels demonstrated correlation with patient age, but not with gender or race. The widespread prevalence of pre-existing anti-PEG Ab, coupled with high Ab levels in a subset of the population, underscores the potential importance of screening patients for anti-PEG Ab levels prior to administration of therapeutics containing PEG.


Subject(s)
Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Polyethylene Glycols/analysis , Adult , Aged , Antigen-Antibody Reactions , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Young Adult
10.
J Mater Chem B ; 4(14): 2428-2434, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27073688

ABSTRACT

Non-invasive medical imaging techniques such as positron emission tomography (PET) imaging are powerful platforms to track the fate of radiolabeled materials for diagnostic or drug delivery applications. Polymer-based nanocarriers tagged with non-standard PET radionuclides with relatively long half-lives (e.g. 64Cu: t1/2 = 12.7 h, 76Br: t1/2 = 16.2h, 89Zr: t1/2 = 3.3 d, 124I: t1/2 = 4.2 d) may greatly expand applications of nanomedicines in molecular imaging and therapy. However, radiolabeling strategies that ensure stable in vivo association of the radiolabel with the nanocarrier remain a significant challenge. In this study, we covalently attach radioiodine to the core of pre-fabricated nanocarriers. First, we encapsulated polyvinyl phenol within a poly(ethylene glycol) coating using Flash NanoPrecipitation (FNP) to produce stable 75 nm and 120 nm nanocarriers. Following FNP, we radiolabeled the encapsulated polyvinyl phenol with 125I via electrophilic aromatic substitution in high radiochemical yields (> 90%). Biodistribution studies reveal low radioactivity in the thyroid, indicating minimal leaching of the radiolabel in vivo. Further, PEGylated [125I]PVPh nanocarriers exhibited relatively long circulation half-lives (t1/2 α = 2.9 h, t1/2 ß = 34.9 h) and gradual reticuloendothelial clearance, with 31% of injected dose in blood retained at 24 h post-injection.

SELECTION OF CITATIONS
SEARCH DETAIL
...