Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 75(1): 51-67, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19954434

ABSTRACT

Photoactive analogs of farnesyl diphosphate (FPP) are useful probes in studies of enzymes that employ this molecule as a substrate. Here, we describe the preparation and properties of two new FPP analogs that contain diazotrifluoropropanoyl photophores linked to geranyl diphosphate via amide or ester linkages. The amide-linked analog (3) was synthesized in 32P-labeled form from geraniol in seven steps. Experiments with Saccharomyces cerevisiae protein farnesyltransferase (ScPFTase) showed that 3 is an alternative substrate for the enzyme. Photolysis experiments with [(32)P]3 demonstrate that this compound labels the beta-subunits of both farnesyltransferase and geranylgeranyltransferase (types 1 and 2). However, the amide-linked probe 3 undergoes a rearrangement to a photochemically unreactive isomeric triazolone upon long term storage making it inconvenient to use. To address this stability issue, the ester-linked analog 4 was prepared in six steps from geraniol. Computational analysis and X-ray crystallographic studies suggest that 4 binds to protein farnesyl transferase (PFTase) in a similar fashion as FPP. Compound 4 is also an alternative substrate for PFTase, and a 32P-labeled form selectively photocrosslinks the beta-subunit of ScPFTase as well as E. coli farnesyldiphosphate synthase and a germacrene-producing sesquiterpene synthase from Nostoc sp. strain PCC7120 (a cyanobacterial source). Finally, nearly exclusive labeling of ScPFTase in crude E. coli extract was observed, suggesting that [32P]4 manifests significant selectivity and should hence be useful for identifying novel FPP-utilizing enzymes in crude protein preparations.


Subject(s)
Polyisoprenyl Phosphates/chemical synthesis , Sesquiterpenes/chemical synthesis , Binding Sites , Farnesyltranstransferase/metabolism , Kinetics , Photoaffinity Labels , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/pharmacology , Saccharomyces cerevisiae Proteins/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Structure-Activity Relationship , Substrate Specificity
2.
J Org Chem ; 61(22): 7738-7745, 1996 Nov 01.
Article in English | MEDLINE | ID: mdl-11667728

ABSTRACT

Farnesyl pyrophosphate (FPP) is involved in a large number of cellular processes including the prenylation of transforming mutants of Ras proteins implicated in cancer. Photoactive analogs could provide useful information about enzyme active sites that bind farnesyl pyrophosphate; however, the availability of such compounds is extremely limited. Molecules that incorporate benzophenone moieties are attractive photoaffinity labeling reagents because of their useful photochemical properties. Here, the syntheses of two compounds, 3a and 3b, containing para- and meta-substituted benzoylbenzoates are described. Compounds 3a and 3b are competitive inhibitors (with respect to FPP) of yeast protein farnesyltransferase (PFTase) with K(i) values of 910 and 380 nM, respectively. Both compounds inactivate PFTase upon photolysis, resulting in as much as 44% inactivation of enzyme activity. Photolysis of PFTase in the presence of [(32)P]3a or of [(32)P]3b results in preferential labeling of the beta subunit, suggesting that this subunit is involved in prenyl group recognition. These compounds should be valuable tools for studying enzymes that utilize FPP as a substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...