Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Rec Open ; 9(1): e39, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35770041

ABSTRACT

Background: Schmallenberg virus (SBV) is a midge-borne arbovirus that first emerged in the European ruminant population in 2011 and has since settled to an endemic pattern of disease outbreaks on an approximately 4-year cycle when herd immunity from the previous circulation drops to a point allowing renewed widescale virus circulation. The impacts of trade restrictions on genetic products (semen, embryos) from affected areas were severe, particularly after the discovery that the virus is intermittently shed in the semen of a small number of bulls. The trade in small ruminant (ram and goat) semen is less than that of bulls; nonetheless, there has been no study into the shedding rate of SBV in ram semen. Methods: Semen samples (n = 65) were collected as part of UK ram trials and artificial insemination studies around the period of the 2016-2018 SBV recirculation. Semen was preserved in RNAlater for shipping, and RNA extraction with RNeasy and S gene RT-quantitative PCR performed for SBV nucleic acid detection. Results: No SBV RNA was detected in any samples. Conclusions: While larger numbers of animals would be needed to completely exclude the possibility of SBV shedding in ram semen, this trial nonetheless highlights that this is likely a rare event if it occurs at all and is unlikely to play a role in disease transmission.

2.
J Med Microbiol ; 71(2)2022 Feb.
Article in English | MEDLINE | ID: mdl-35144720

ABSTRACT

Maedi-visna (MV) is a lentiviral disease of sheep responsible for severe production losses in affected flocks. There are no vaccination or treatment options with control reliant on test and cull strategies. The most common diagnostic methods used at present are combination ELISAs for Gag and Env proteins with virus variability making PCR diagnostics still largely an experimental tool. To assess variability in viral loads and diagnostic tests results, serology, DNA and RNA viral loads were measured in the blood of 12 naturally infected rams repeatedly blood sampled over 16 months. Six animals tested negative in one or more tests at one or more time points and would have been missed on screening programmes reliant on one test method or a single time point. In addition the one animal homozygous for the 'K' allele of the TMEM154 E35K SNP maintained very low viral loads in all assays and apparently cleared infection to below detectable limits at the final time point it was sampled. This adds crucial data to the strong epidemiological evidence that this locus represents a genuine resistance marker for MV infection and is a strong candidate for selective breeding of sheep for resistance to disease.


Subject(s)
Membrane Proteins/genetics , Pneumonia, Progressive Interstitial, of Sheep , Sheep/virology , Visna , Alleles , Animals , Disease Resistance , Longitudinal Studies , Male , Pneumonia, Progressive Interstitial, of Sheep/diagnosis , Pneumonia, Progressive Interstitial, of Sheep/genetics , Polymorphism, Single Nucleotide , Sheep/genetics , Viral Load , Visna/diagnosis , Visna/genetics , Visna-maedi virus
3.
BMC Vet Res ; 15(1): 426, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779623

ABSTRACT

BACKGROUND: Schmallenberg virus (SBV) is a midge borne virus of cattle and sheep. Infection is typically asymptomatic in adult sheep but fetal infection during pregnancy can result in abortion, stillbirth, neurological disorders and malformations of variable severity in newborn animals. It was first identified in Germany and the Netherlands in 2011 and then circulated throughout Europe in 2012 and 2013. Circulation in subsequent years was low or non-existent until summer and autumn 2016, leading to an increased incidence of deformed newborn lambs and calves in 2016-17. This study reports SBV circulation in October 2016 within a group of 24 ewes and 13 rams. The ewes were monitored at 3 times points over an 11 week period (September to December 2016). RESULTS: Most ewes displayed an increase in SBV VNT with antibody titre increases greater in older, previously exposed ewes. Two ewes had SBV RNA detectable by RT-qPCR, one on 30/09/16 and one on 04/11/16. Of these ewes, one had detectable serum SBV RNA (indicating viraemia) despite pre-existing antibody. The rams had been previously vaccinated with a commercial inactivated SBV vaccine, they showed minimal neutralising antibody titres against SBV 8 months post-vaccination and all displayed increased titre in October 2016. CONCLUSION: This data suggests that SBV circulated for a minimum period of 5 weeks in September to October 2016 in central England. Ewes previously exposed to virus showed an enhanced antibody response compared to naïve animals. Pre-existing antibody titre did not prevent re-infection in at least one animal, implying immunity to SBV upon natural exposure may not be life-long. In addition, data suggests that immunity provided by killed adjuvanted SBV vaccines only provides short term protection (< 8 months) from virus.


Subject(s)
Bunyaviridae Infections/veterinary , Orthobunyavirus/immunology , Sheep Diseases/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bunyaviridae Infections/blood , Bunyaviridae Infections/immunology , England/epidemiology , Female , Male , RNA, Viral/blood , Sheep , Sheep Diseases/virology , Sheep, Domestic , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...