Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 58(13): 5189-207, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-25970324

ABSTRACT

Efforts to improve upon the physical properties and metabolic stability of Aurora kinase inhibitor 14a revealed that potency against multidrug-resistant cell lines was compromised by increased polarity. Despite its high in vitro metabolic intrinsic clearance, 23r (AMG 900) showed acceptable pharmacokinetic properties and robust pharmacodynamic activity. Projecting from in vitro data to in vivo target coverage was not practical due to disjunctions between enzyme and cell data, complex and apparently contradictory indicators of binding kinetics, and unmeasurable free fraction in plasma. In contrast, it was straightforward to relate pharmacokinetics to pharmacodynamics and efficacy by following the time above a threshold concentration. On the basis of its oral route of administration, a selectivity profile that favors Aurora-driven pharmacology and its activity against multidrug-resistant cell lines, 23r was identified as a potential best-in-class Aurora kinase inhibitor. In phase 1 dose expansion studies with G-CSF support, 23r has shown promising single agent activity.


Subject(s)
Aurora Kinases/antagonists & inhibitors , Drug Discovery , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Nude , Molecular Structure , Neoplasms/enzymology , Neoplasms/pathology , Rats , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Cancer Res ; 70(23): 9846-54, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20935223

ABSTRACT

In mammalian cells, the aurora kinases (aurora-A, -B, and -C) play essential roles in regulating cell division. The expression of aurora-A and -B is elevated in a variety of human cancers and is associated with high proliferation rates and poor prognosis, making them attractive targets for anticancer therapy. AMG 900 is an orally bioavailable, potent, and highly selective pan-aurora kinase inhibitor that is active in taxane-resistant tumor cell lines. In tumor cells, AMG 900 inhibited autophosphorylation of aurora-A and -B as well as phosphorylation of histone H3 on Ser(10), a proximal substrate of aurora-B. The predominant cellular response of tumor cells to AMG 900 treatment was aborted cell division without a prolonged mitotic arrest, which ultimately resulted in cell death. AMG 900 inhibited the proliferation of 26 tumor cell lines, including cell lines resistant to the antimitotic drug paclitaxel and to other aurora kinase inhibitors (AZD1152, MK-0457, and PHA-739358), at low nanomolar concentrations. Furthermore, AMG 900 was active in an AZD1152-resistant HCT116 variant cell line that harbors an aurora-B mutation (W221L). Oral administration of AMG 900 blocked the phosphorylation of histone H3 in a dose-dependent manner and significantly inhibited the growth of HCT116 tumor xenografts. Importantly, AMG 900 was broadly active in multiple xenograft models, including 3 multidrug-resistant xenograft models, representing 5 tumor types. AMG 900 has entered clinical evaluation in adult patients with advanced cancers and has the potential to treat tumors refractory to anticancer drugs such as the taxanes.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adult , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials as Topic , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , HCT116 Cells , HeLa Cells , Histones/metabolism , Humans , Mice , Mice, Nude , Mutation , Neoplasms/enzymology , Neoplasms/pathology , Organophosphates/pharmacology , Paclitaxel/pharmacology , Phosphorylation/drug effects , Piperazines/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/pharmacology , Quinazolines/pharmacology , Xenograft Model Antitumor Assays
3.
J Med Chem ; 53(17): 6368-77, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20684549

ABSTRACT

The discovery of aurora kinases as essential regulators of cell division has led to intense interest in identifying small molecule aurora kinase inhibitors for the potential treatment of cancer. A high-throughput screening effort identified pyridinyl-pyrimidine 6a as a moderately potent dual inhibitor of aurora kinases -A and -B. Optimization of this hit resulted in an anthranilamide lead (6j) that possessed improved enzyme and cellular activity and exhibited a high level of kinase selectivity. However, this anthranilamide and subsequent analogues suffered from a lack of oral bioavailability. Converting the internally hydrogen-bonded six-membered pseudo-ring of the anthranilamide to a phthalazine (8a-b) led to a dramatic improvement in oral bioavailability (38-61%F) while maintaining the potency and selectivity characteristics of the anthranilamide series. In a COLO 205 tumor pharmacodynamic assay measuring phosphorylation of the aurora-B substrate histone H3 at serine 10 (p-histone H3), oral administration of 8b at 50 mg/kg demonstrated significant reduction in tumor p-histone H3 for at least 6 h.


Subject(s)
Antineoplastic Agents/chemical synthesis , Phthalazines/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Aurora Kinase B , Aurora Kinases , Biological Availability , Blood Proteins/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Histones/metabolism , Humans , In Vitro Techniques , Male , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Neoplasm Transplantation , Phthalazines/pharmacokinetics , Phthalazines/pharmacology , Protein Binding , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...