Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 100(6): 1163-1175, 2019 12.
Article in English | MEDLINE | ID: mdl-31436858

ABSTRACT

During meiosis, recombination ensures allelic exchanges through crossovers (COs) between the homologous chromosomes. Advances in our understanding of the rules of COs have come from studies of mutations including structural chromosomal rearrangements that, when heterozygous, are known to impair COs in various organisms. In this work, we investigate the effect of a large heterozygous pericentric inversion on male and female recombination in Arabidopsis. The inversion was discovered in the Atmcc1 mutant background and was characterized through genetic and next-generation sequencing analysis. Reciprocal backcross populations, each consisting of over 400 individuals, obtained from the mutant and the wild type, both crossed with Landsberg erecta, were analyzed genome-wide by 143 single-nucleotide polymorphisms. The negative impact of inversion became evident in terms of CO loss in the rearranged chromosome in both male and female meiosis. No single-CO event was detected within the inversion, consistent with a post-meiotic selection operating against unbalanced gametes. Cytological analysis of chiasmata in F1 plants confirmed that COs were reduced in male meiosis in the chromosome with inversion. Crossover suppression on the rearranged chromosome is associated with a significant increase of COs in the other chromosomes, thereby maintaining unchanged the number of COs per cell. The CO pattern observed in our study is consistent with the interchromosomal (IC) effect as first described in Drosophila. In contrast to male meiosis, in female meiosis no IC effect is visible. This may be related to the greater strength of interference that constrains the CO number in excess of the minimum value imposed by CO assurance in Arabidopsis female meiosis.


Subject(s)
Arabidopsis/genetics , Chromosome Inversion , Chromosomes, Plant/genetics , Crossing Over, Genetic , Heterozygote , Recombination, Genetic , Chromosome Mapping , Genes, Plant , Genome, Plant , Meiosis/genetics , Pollen , Polymorphism, Single Nucleotide
2.
BMC Genomics ; 16: 89, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25879408

ABSTRACT

BACKGROUND: Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes; rather there are preferred locations where they may take place. The positioning of crossovers is known to be influenced by both exogenous and endogenous factors as well as structural features inherent to the chromosome itself. We have introduced large structural changes into Arabidopsis chromosomes and report their effects on crossover positioning. RESULTS: The introduction of large deletions and putative inversions silenced recombination over the length of the structural change. In the majority of cases analyzed, the total recombination frequency over the chromosomes was unchanged. The loss of crossovers at the sites of structural change was compensated for by increases in recombination frequencies elsewhere on the chromosomes, mostly in single intervals of one to three megabases in size. Interestingly, two independent cases of induced structural changes in the same chromosomal interval were found on both chromosomes 1 and 2. In both cases, compensatory increases in recombination frequencies were of similar strength and took place in the same chromosome region. In contrast, deletions in chromosome arms carrying the nucleolar organizing region did not change recombination frequencies in the remainder of those chromosomes. CONCLUSIONS: When taken together, these observations show that changes in the physical structure of the chromosome can have large effects on the positioning of COs within that chromosome. Moreover, different reactions to induced structural changes are observed between and within chromosomes. However, the similarity in reaction observed when looking at chromosomes carrying similar changes suggests a direct causal relation between induced change and observed reaction.


Subject(s)
Arabidopsis/genetics , Chromosomes, Plant/chemistry , Crossing Over, Genetic/genetics , Chromosome Deletion , Chromosome Inversion/radiation effects , Chromosomes, Plant/metabolism , Chromosomes, Plant/radiation effects , Gamma Rays , Gene Frequency , Genotype , Loss of Heterozygosity/radiation effects , Meiosis , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...