Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 35(6): 795-808, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38353655

ABSTRACT

Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.


Subject(s)
Acute Kidney Injury , Hepatitis A Virus Cellular Receptor 1 , Humans , Hepatitis A Virus Cellular Receptor 1/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/immunology , Apoptosis , Animals , Biomarkers/metabolism
2.
Methods Mol Biol ; 2440: 91-97, 2022.
Article in English | MEDLINE | ID: mdl-35218534

ABSTRACT

Examining protein-protein interactions provides critical insight into numerous human diseases and infections. Here we describe a protocol for bimolecular fluorescence complementation, which can be used to directly visualize and characterize intracellular protein-protein interactions and ascertain their localization using fluorescence microscopy.


Subject(s)
Protein Interaction Mapping , Fluorescence , Humans , Luminescent Proteins/genetics , Microscopy, Fluorescence/methods , Protein Interaction Mapping/methods
3.
J Biol Chem ; 297(3): 101042, 2021 09.
Article in English | MEDLINE | ID: mdl-34358561

ABSTRACT

Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef's dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif-dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4-Positive T-Lymphocytes/virology , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Host-Pathogen Interactions , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Protein Binding , nef Gene Products, Human Immunodeficiency Virus/genetics
4.
J Virol ; 95(16): e0058821, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34037423

ABSTRACT

Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


Subject(s)
CD4 Antigens/metabolism , HIV Infections/virology , HIV-1/pathogenicity , Membrane Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/physiology , Amino Acid Motifs , CD4-Positive T-Lymphocytes/pathology , Disease Progression , Down-Regulation , Female , HIV Infections/metabolism , HIV-1/genetics , Humans , Mutation , Polymorphism, Genetic , Virion , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
5.
J Virol ; 94(7)2020 03 17.
Article in English | MEDLINE | ID: mdl-31941771

ABSTRACT

Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Down-Regulation , Hepatitis A Virus Cellular Receptor 2/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Cell Membrane/metabolism , Gene Expression Regulation , HEK293 Cells , HIV-1/metabolism , HeLa Cells , Humans , Interferon-beta/metabolism , RNA, Small Interfering/metabolism , trans-Golgi Network/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...