Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 29(20): 126675, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31521475

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.


Subject(s)
Benzamidines/chemistry , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence , Benzamidines/pharmacology , Binding Sites , Drug Evaluation, Preclinical , Humans , Isomerism , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Serine Peptidase Inhibitor Kazal-Type 5/genetics , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
3.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 385-391, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31045568

ABSTRACT

The inhibition of kallikrein 5 (KLK5) has been identified as a potential strategy for treatment of the genetic skin disorder Netherton syndrome, in which loss-of-function mutations in the SPINK5 gene lead to down-regulation of the endogenous inhibitor LEKTI-1 and profound skin-barrier defects with severe allergic manifestations. To aid in the development of a medicine for this target, an X-ray crystallographic system was developed to facilitate fragment-guided chemistry and knowledge-based drug-discovery approaches. Here, the development of a surrogate crystallographic system in place of KLK5, which proved to be challenging to crystallize, is described. The biochemical robustness of the crystallographic surrogate and the suitability of the system for the study of small nonpeptidic fragments and lead-like molecules are demonstrated.


Subject(s)
Benzamidines/chemistry , Kallikreins/chemistry , Protease Inhibitors/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Benzamidines/pharmacology , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Drug Discovery , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kallikreins/antagonists & inhibitors , Kallikreins/genetics , Kallikreins/metabolism , Kinetics , Models, Molecular , Mutation , Netherton Syndrome/drug therapy , Netherton Syndrome/enzymology , Protease Inhibitors/pharmacology , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Static Electricity , Substrate Specificity
4.
Bioorg Med Chem Lett ; 29(12): 1454-1458, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31005442

ABSTRACT

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases particularly KLK5 has been well established. To treat sufferers of this severe condition we wished to develop a topical KLK5 inhibitor in order to normalise epidermal shedding and reduce the associated inflammation and itching. In this paper we describe structure-based optimisation of a series of brightly coloured weak KLK5 inhibitors into colourless, non-irritant molecules with good KLK5 activity and selectivity over a range of serine proteases.


Subject(s)
Drug Design , Kallikreins/antagonists & inhibitors , Netherton Syndrome/drug therapy , Humans
5.
Bioorg Med Chem Lett ; 29(6): 821-825, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30691925

ABSTRACT

Netherton syndrome (NS) is a rare and debilitating severe autosomal recessive genetic skin disease with high mortality rates particularly in neonates. NS is caused by loss-of-function SPINK5 mutations leading to unregulated kallikrein 5 (KLK5) and kallikrein 7 (KLK7) activity. Furthermore, KLK5 inhibition has been proposed as a potential therapeutic treatment for NS. Identification of potent and selective KLK5 inhibitors would enable further exploration of the disease biology and could ultimately lead to a treatment for NS. This publication describes how fragmentation of known trypsin-like serine protease (TLSP) inhibitors resulted in the identification of a series of phenolic amidine-based KLK5 inhibitors 1. X-ray crystallography was used to find alternatives to the phenol interaction leading to identification of carbonyl analogues such as lactam 13 and benzimidazole 15. These reversible inhibitors, with selectivity over KLK1 (10-100 fold), provided novel starting points for the guided growth towards suitable tool molecules for the exploration of KLK5 biology.


Subject(s)
Benzamidines/chemistry , Kallikreins/antagonists & inhibitors , Serine Proteinase Inhibitors/chemistry , Animals , Benzamidines/chemical synthesis , Benzamidines/metabolism , Catalytic Domain , Drug Design , Kallikreins/metabolism , Netherton Syndrome/drug therapy , Protein Binding , Salicylamides/chemical synthesis , Salicylamides/chemistry , Salicylamides/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/metabolism , Spodoptera/genetics
6.
Eur J Pharmacol ; 564(1-3): 219-25, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17382926

ABSTRACT

The pharmacological properties of the novel ligand, (2R,3R,4S,5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4-furandiol (I), at the human adenosine receptors were investigated using Chinese hamster ovary cell lines recombinantly expressing these receptors. Functional studies were performed using a cyclic AMP-coupled reporter gene system. Binding studies were performed using membranes from these cells. The effects of ligand (I) were also determined on functional responses of human neutrophils and eosinophils. Ligand (I) had a high affinity for the adenosine A(2A) receptor (pKi 7.8+/-0.2) and was a potent agonist at this receptor (pEC(50) 9.0+/-0.2). Ligand (I) had a similar affinity for the adenosine A(3) receptor (pKi 7.8+/-0.1) but displayed no agonist activity, acting instead as a competitive antagonist (pA(2) 8.3+/-0.04). Ligand (I) had lower affinity for adenosine A(1) and A(2B) receptors (pKi

Subject(s)
Adenosine A2 Receptor Agonists , Adenosine A3 Receptor Antagonists , Purines/pharmacology , Tetrazoles/pharmacology , Adenosine A1 Receptor Agonists , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP , Dose-Response Relationship, Drug , Eosinophils/drug effects , Eosinophils/metabolism , Genes, Reporter , Humans , Ligands , Neutrophils/drug effects , Neutrophils/metabolism , Purines/administration & dosage , Radioligand Assay , Reactive Oxygen Species/metabolism , Receptor, Adenosine A1/drug effects , Receptor, Adenosine A2A/drug effects , Receptor, Adenosine A2B/drug effects , Receptor, Adenosine A3/drug effects , Tetrazoles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...