Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nat Neurosci ; 27(6): 1046-1050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741022

ABSTRACT

It has been suggested that the function of sleep is to actively clear metabolites and toxins from the brain. Enhanced clearance is also said to occur during anesthesia. Here, we measure clearance and movement of fluorescent molecules in the brains of male mice and show that movement is, in fact, independent of sleep and wake or anesthesia. Moreover, we show that brain clearance is markedly reduced, not increased, during sleep and anesthesia.


Subject(s)
Anesthesia , Brain , Sleep , Animals , Male , Brain/metabolism , Brain/physiology , Sleep/physiology , Mice , Mice, Inbred C57BL , Wakefulness/physiology
3.
4.
Crit Care ; 24(1): 667, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33246487

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a major cause of morbidity and mortality, but there are no clinically proven treatments that specifically target neuronal loss and secondary injury development following TBI. In this study, we evaluate the effect of xenon treatment on functional outcome, lesion volume, neuronal loss and neuroinflammation after severe TBI in rats. METHODS: Young adult male Sprague Dawley rats were subjected to controlled cortical impact (CCI) brain trauma or sham surgery followed by treatment with either 50% xenon:25% oxygen balance nitrogen, or control gas 75% nitrogen:25% oxygen. Locomotor function was assessed using Catwalk-XT automated gait analysis at baseline and 24 h after injury. Histological outcomes were assessed following perfusion fixation at 15 min or 24 h after injury or sham procedure. RESULTS: Xenon treatment reduced lesion volume, reduced early locomotor deficits, and attenuated neuronal loss in clinically relevant cortical and subcortical areas. Xenon treatment resulted in significant increases in Iba1-positive microglia and GFAP-positive reactive astrocytes that was associated with neuronal preservation. CONCLUSIONS: Our findings demonstrate that xenon improves functional outcome and reduces neuronal loss after brain trauma in rats. Neuronal preservation was associated with a xenon-induced enhancement of microglial cell numbers and astrocyte activation, consistent with a role for early beneficial neuroinflammation in xenon's neuroprotective effect. These findings suggest that xenon may be a first-line clinical treatment for brain trauma.


Subject(s)
Inflammation , Locomotion , Neurons , Xenon , Animals , Male , Brain/pathology , Brain/physiopathology , Brain Injuries, Traumatic , Disease Models, Animal , Inflammation/drug therapy , Inflammation/prevention & control , Locomotion/drug effects , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Outcome Assessment, Health Care/methods , Rats, Sprague-Dawley/physiology , Xenon/pharmacology , Xenon/therapeutic use
5.
Br J Anaesth ; 123(5): 601-609, 2019 11.
Article in English | MEDLINE | ID: mdl-31470983

ABSTRACT

BACKGROUND: Noble gases may provide novel treatments for neurological injuries such as ischaemic and traumatic brain injury. Few studies have evaluated the complete series of noble gases under identical conditions in the same model. METHODS: We used an in vitro model of hypoxia-ischaemia to evaluate the neuroprotective properties of the series of noble gases, helium, neon, argon, krypton, and xenon. Organotypic hippocampal brain slices from mice were subjected to oxygen-glucose deprivation, and injury was quantified using propidium iodide fluorescence. RESULTS: Both xenon and argon were equally effective neuroprotectants, with 0.5 atm of xenon or argon reducing injury by 96% (P<0.0001), whereas helium, neon, and krypton were devoid of any protective effect. Neuroprotection by xenon, but not argon, was reversed by elevated glycine. CONCLUSIONS: Xenon and argon are equally effective as neuroprotectants against hypoxia-ischaemia in vitro, with both gases preventing injury development. Although xenon's neuroprotective effect may be mediated by inhibition of the N-methyl-d-aspartate receptor at the glycine site, argon acts via a different mechanism. These findings may have important implications for their clinical use as neuroprotectants.


Subject(s)
Argon/pharmacology , Hippocampus/drug effects , Hypoxia-Ischemia, Brain/prevention & control , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Xenon/pharmacology , Animals , Disease Models, Animal , Female , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Rats
6.
Br J Anaesth ; 123(1): 60-73, 2019 07.
Article in English | MEDLINE | ID: mdl-31122738

ABSTRACT

BACKGROUND: Xenon is a noble gas with neuroprotective properties that can improve short and long-term outcomes in young adult mice after controlled cortical impact. This follow-up study investigates the effects of xenon on very long-term outcomes and survival. METHODS: C57BL/6N young adult male mice (n=72) received single controlled cortical impact or sham surgery and were treated with either xenon (75% Xe:25% O2) or control gas (75% N2:25% O2). Outcomes measured were: (i) 24 h lesion volume and neurological outcome score; (ii) contextual fear conditioning at 2 weeks and 20 months; (iii) corpus callosum white matter quantification; (iv) immunohistological assessment of neuroinflammation and neuronal loss; and (v) long-term survival. RESULTS: Xenon treatment significantly reduced secondary injury (P<0.05), improved short-term vestibulomotor function (P<0.01), and prevented development of very late-onset traumatic brain injury (TBI)-related memory deficits. Xenon treatment reduced white matter loss in the contralateral corpus callosum and neuronal loss in the contralateral hippocampal CA1 and dentate gyrus areas at 20 months. Xenon's long-term neuroprotective effects were associated with a significant (P<0.05) reduction in neuroinflammation in multiple brain areas involved in associative memory, including reduction in reactive astrogliosis and microglial cell proliferation. Survival was improved significantly (P<0.05) in xenon-treated animals compared with untreated animals up to 12 months after injury. CONCLUSIONS: Xenon treatment after TBI results in very long-term improvements in clinically relevant outcomes and survival. Our findings support the idea that xenon treatment shortly after TBI may have long-term benefits in the treatment of brain trauma patients.


Subject(s)
Brain Injuries, Traumatic/complications , Brain/physiopathology , Cognition Disorders/prevention & control , Inflammation/prevention & control , Neurons/drug effects , Xenon/therapeutic use , Animals , Brain/drug effects , Chronic Disease , Cognition , Cognition Disorders/etiology , Disease Models, Animal , Follow-Up Studies , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents , Survival Analysis
7.
J Vis Exp ; (142)2018 12 21.
Article in English | MEDLINE | ID: mdl-30614488

ABSTRACT

Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.


Subject(s)
Brain Injuries, Traumatic/therapy , Disease Models, Animal , Animals , Brain Injuries, Traumatic/pathology , Mice , Rats, Sprague-Dawley
8.
J Neurotrauma ; 35(8): 1037-1044, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29285980

ABSTRACT

The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.


Subject(s)
Blast Injuries/pathology , Brain Injuries, Traumatic/pathology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Xenon/pharmacology , Animals , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Mice , Mice, Inbred C57BL , Neurons/pathology , Organ Culture Techniques/methods
9.
Br J Pharmacol ; 173(21): 3110-3120, 2016 11.
Article in English | MEDLINE | ID: mdl-27459129

ABSTRACT

BACKGROUND AND PURPOSE: Glycine receptors are important players in pain perception and movement disorders and therefore important therapeutic targets. Glycine receptors can be modulated by the intravenous anaesthetic propofol (2,6-diisopropylphenol). However, the drug is more potent, by at least one order of magnitude, on GABAA receptors. It has been proposed that halogenation of the propofol molecule generates compounds with selective enhancement of glycinergic modulatory properties. EXPERIMENTAL APPROACH: We synthesized 4-bromopropofol, 4-chloropropofol and 4-fluoropropofol. The direct activating and modulatory effects of these drugs and propofol were compared on recombinant rat glycine and human GABAA receptors expressed in oocytes. Behavioural effects of the compounds were compared in the tadpole loss-of-righting assay. KEY RESULTS: Concentration-response curves for potentiation of homomeric α1, α2 and α3 glycine receptors were shifted to lower drug concentrations, by 2-10-fold, for the halogenated compounds. Direct activation by all compounds was minimal with all subtypes of the glycine receptor. The four compounds were essentially equally potent modulators of the α1ß3γ2L GABAA receptor with EC50 between 4 and 7 µM. The EC50 for loss-of-righting in Xenopus tadpoles, a proxy for loss of consciousness and considered to be mediated by actions on GABAA receptors, ranged from 0.35 to 0.87 µM. CONCLUSIONS AND IMPLICATIONS: We confirm that halogenation of propofol more strongly affects modulation of homomeric glycine receptors than α1ß3γ2L GABAA receptors. However, the effective concentrations of all tested halogenated compounds remained lower for GABAA receptors. We infer that 4-bromopropofol, 4-chloropropofol and 4-fluoropropofol are not selective homomeric glycine receptor modulators.


Subject(s)
Propofol/analogs & derivatives , Propofol/pharmacology , Receptors, GABA-A/metabolism , Receptors, Glycine/metabolism , Animals , Dose-Response Relationship, Drug , Humans , Propofol/chemistry , Rats , Recombinant Proteins/metabolism , Structure-Activity Relationship , Xenopus laevis
11.
Nat Chem Biol ; 9(11): 715-20, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056400

ABSTRACT

Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA (γ-aminobutyric acid type A) receptors, but where it binds to this receptor is not known and has been a matter of some debate. We synthesized a new propofol analog photolabeling reagent whose biological activity is very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin that have been identified using X-ray crystallography. Using a combination of protiated and deuterated versions of the reagent to label mammalian receptors in intact membranes, we identified a new binding site for propofol in GABAA receptors consisting of both ß3 homopentamers and α1ß3 heteropentamers. The binding site is located within the ß subunit at the interface between the transmembrane domains and the extracellular domain and lies close to known determinants of anesthetic sensitivity in the transmembrane segments TM1 and TM2.


Subject(s)
Photoaffinity Labels/analysis , Propofol/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Binding Sites , Humans , Models, Molecular , Molecular Structure , Photoaffinity Labels/chemistry , Propofol/chemistry , Serum Albumin/chemistry , Structure-Activity Relationship
12.
Anesthesiology ; 117(1): 38-47, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22634870

ABSTRACT

BACKGROUND: Xenon is a general anesthetic with neuroprotective properties. Xenon inhibition at the glycine-binding site of the N-Methyl-D-aspartate (NMDA) receptor mediates xenon neuroprotection against ischemic injury in vitro. Here we identify specific amino acids important for xenon binding to the NMDA receptor, with the aim of finding silent mutations that eliminate xenon binding but leave normal receptor function intact. METHODS: Site-directed mutagenesis was used to mutate specific amino-acids in the GluN1 subunit of rat NMDA receptors. Mutant GluN1/GluN2A receptors were expressed in HEK 293 cells and were assessed functionally using patch-clamp electrophysiology. The responses of the mutant receptors to glycine and anesthetics were determined. RESULTS: Mutation of phenylalanine 758 to an aromatic tryptophan or tyrosine left glycine affinity unchanged, but eliminated xenon binding without affecting the binding of sevoflurane or isoflurane. CONCLUSIONS: These findings confirm xenon binds to the glycine site of the GluN1 subunit of the NMDA receptor and indicate that interactions between xenon and the aromatic ring of the phenylalanine 758 residue are important for xenon binding. Our most important finding is that we have identified two mutations, F758W and F758Y, that eliminate xenon binding to the NMDA receptor glycine site without changing the glycine affinity of the receptor or the binding of volatile anesthetics. The identification of these selective mutations will allow knock-in animals to be used to dissect the mechanism(s) of xenon's neuroprotective and anesthetic properties in vivo.


Subject(s)
Anesthetics, Inhalation/pharmacology , Glycine/metabolism , Mutation , Receptors, N-Methyl-D-Aspartate/genetics , Xenon/pharmacology , Animals , Binding Sites , Binding, Competitive , HEK293 Cells , Humans , Isoflurane/pharmacology , Methyl Ethers/pharmacology , Neuroprotective Agents/pharmacology , Rats , Sevoflurane , Xenon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...