Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Phys Rev Lett ; 130(14): 145103, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084458

ABSTRACT

Inverse bremsstrahlung absorption was measured based on transmission through a finite-length plasma that was thoroughly characterized using spatially resolved Thomson scattering. Expected absorption was then calculated using the diagnosed plasma conditions while varying the absorption model components. To match data, it is necessary to account for (i) the Langdon effect; (ii) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm, as is typical of bremsstrahlung theories but not transport theories; and (iii) a correction due to ion screening. Radiation-hydrodynamic simulations of inertial confinement fusion implosions have to date used a Coulomb logarithm from the transport literature and no screening correction. We anticipate that updating the model for collisional absorption will substantially revise our understanding of laser-target coupling for such implosions.

2.
Rev Sci Instrum ; 93(10): 103515, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319322

ABSTRACT

Light scattered from a target is the most-direct measurement for diagnosing laser absorption in a direct-drive implosion. Observations from OMEGA implosions show much larger scattered-light asymmetries than predictions. A new instrument has been developed to absolutely measure the scattered-light intensity and nonuniformity for the purpose of diagnosing the asymmetry. The scattered-light uniformity imager (SLUI) diagnostic records the variation in scattered-light intensity over a transmission diffuser using a charge-coupled device (CCD)/lens assembly. At the standard operating position, an 11.3° (f/2.5) cone of light is collected. A stray light baffle, debris shield, and antireflection absorbing filter are also incorporated into the diagnostic payload inserted into the target chamber. The imaging parts of the diagnostic (light baffle, vacuum window, filters, lens, and CCD camera) are located outside the target chamber. Five SLUIs have been built and deployed in OMEGA's ten-inch manipulator diagnostic ports, covering almost 5% of the emission surface, enabling an absolute scattered-light measurement should be within a few percent of the global average. Each SLUI system is calibrated offline, providing absolute scattered-light intensity measurements. Based on the measured point spread function, each diffuser plate image contains over 20 000 independent scattered-light absolute-intensity measurements of the variation over the collection cone. SLUI provides a platform to study scattered light and absorption asymmetries, and their possible sources.

3.
Phys Rev Lett ; 129(11): 115002, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36154407

ABSTRACT

Measurements were made of the return current instability growth rate, demonstrating its concurrence with nonlocal transport. Thomson scattering was used to measure a maximum growth rate of 5.1×10^{9} Hz, which was 3 times less than classical Spitzer-Härm theory predicts. The measured plasma conditions indicate the heat flux was nonlocal, and Vlasov-Fokker-Planck simulations that account for nonlocality reproduce the measured growth rates. Furthermore, the threshold for the return current instability was measured (δ_{T}=0.017±0.002) to be in good agreement with previous theoretical models.

4.
Phys Rev Lett ; 129(9): 095001, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36083671

ABSTRACT

Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.

5.
Phys Rev Lett ; 127(7): 075001, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34459636

ABSTRACT

Laser-direct-drive symmetric implosions on OMEGA illuminate a target with 60 laser beams and are designed to produce spherical implosions. Each beam is smoothed using orthogonal polarizations obtained by passing the laser beams through distributed polarization rotators (DPRs). Observations of light scattered from OMEGA implosions do not show the expected symmetry and have much larger variation than standard predictions. For the first time, we have quantified the scattered-light nonuniformity from individual beams and identified the DPRs as the source of the enhanced nonuniformity. An instrument was invented that isolated and measured the variation in the intensity and polarization of the light scattered from each OMEGA beam. The asymmetric intensity and polarization measurements are explained when the on-target offsets between the two orthogonal polarizations produced by the DPRs are modeled using a 3D cross-beam energy transfer (CBET) code that tracks the polarizations of each beam. The time-integrated nonuniformity in laser absorption and scattered light due to CBET and the DPR polarization offsets during high-performance OMEGA implosions is predicted to be significant and dominated by low spherical harmonic mode numbers. The nonuniformity is predicted to be greatly reduced by replacing the DPRs with new optics that create smaller offsets.

6.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397224

ABSTRACT

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

7.
Rev Sci Instrum ; 92(4): 043525, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243428

ABSTRACT

Laser light scattered from a target is the most-direct measurement for diagnosing laser absorption in a direct-drive implosion. The 3ω gated optical imager beamlets diagnostic images unabsorbed light from all 60 OMEGA beams as distinct "beamlet" spots for each beam. The implosion can be diagnosed using the position and intensity of these beamlets. The position of each beamlet in the image is determined by refraction and can be used to fit the coronal plasma density profile of the implosion. The inferred plasma density profiles are comparable to the profiles predicted by the 1D hydrodynamics code LILAC but suggest that the predictions underestimate the density farther out in the corona. The intensity of light in each spot depends on the cumulative effects of absorption and cross-beam energy transfer along the beamlet's path through the corona. The measured variation in intensity and polarization between similar spots indicates that absorption during OMEGA implosions is less uniform than previously known.

8.
Phys Rev Lett ; 124(18): 185001, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441948

ABSTRACT

Radiation-hydrodynamic simulations of directly driven fusion experiments at the Omega Laser Facility predict absorption accurately when targets are driven at low overlapped laser intensity. Discrepancies appear at increased intensity, however, with higher-than-expected laser absorption on target. Strong correlations with signatures of the two-plasmon decay (TPD) instability-including half-harmonic and hard-x-ray emission-indicate that TPD is responsible for this anomalous absorption. Scattered light data suggest that up to ≈30% of the laser power reaching quarter-critical density can be absorbed locally when the TPD threshold is exceeded. A scaling of absorption versus TPD threshold parameter was empirically determined and validated using the laser-plasma simulation environment code.

9.
Nature ; 565(7741): 581-586, 2019 01.
Article in English | MEDLINE | ID: mdl-30700868

ABSTRACT

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

10.
Rev Sci Instrum ; 89(10): 10E101, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399728

ABSTRACT

A new diagnostic has been fielded on OMEGA to diagnose cross-beam energy transfer (CBET) during direct-drive implosions. Unabsorbed light from each OMEGA laser beam is imaged as a distinct "spot" onto a gated optical imager. Each spot is in essence the endpoint of a beamlet of light that originates from different regions of each beam profile and follows a path determined by refraction. The intensity of light in the beamlet varies along its path as a result of absorption and CBET with other beamlets. This diagnostic allows the investigation of the effects of CBET on laser energy from specific locations of the beam profile. The diagnostic records images in two 200-ps time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarizations recorded on separate images, allowing the absolute polarization of each beamlet to be determined. This diagnostic has provided the first evidence of polarization rotation caused by CBET during direct-drive implosions.

11.
Phys Rev Lett ; 120(24): 245003, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956968

ABSTRACT

A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3 mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290 eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380 km/s resulting in a peak kinetic energy of ∼21 kJ, which once stagnated produced a total DT neutron yield of 1.9×10^{16} (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3 g/cm^{2}) and stagnation pressure (∼360 Gbar) never before achieved in a laboratory experiment.

12.
Phys Rev Lett ; 120(12): 125001, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694102

ABSTRACT

Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

13.
Rev Sci Instrum ; 87(11): 11E401, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910493

ABSTRACT

Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

15.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447511

ABSTRACT

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

16.
Phys Rev Lett ; 116(15): 155002, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27127973

ABSTRACT

Multilayer direct-drive inertial-confinement-fusion targets are shown to significantly reduce two-plasmon decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor-of-5 reduction in hot-electron generation (>50 keV) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD-driven hot-electron production using a laser-plasma interaction code (lpse) that includes nonlinear and kinetic effects show good agreement with the measurements. The simulations suggest that the reduction in hot-electron production observed in the multilayer targets is primarily caused by increased electron-ion collisional damping.

17.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26274424

ABSTRACT

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

18.
Phys Rev Lett ; 114(17): 175001, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25978240

ABSTRACT

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×.

19.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910132

ABSTRACT

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

20.
Article in English | MEDLINE | ID: mdl-25871046

ABSTRACT

A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.


Subject(s)
Electrons , Lasers , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...