Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Parasitol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806068

ABSTRACT

Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.

2.
Genome Res ; 33(1): 154-167, 2023 01.
Article in English | MEDLINE | ID: mdl-36617680

ABSTRACT

Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.


Subject(s)
Caenorhabditis elegans , Chromosomes , Animals , Caenorhabditis elegans/genetics , In Situ Hybridization, Fluorescence , Mutation , Genomics
3.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34909608

ABSTRACT

We used whole-genome sequencing (WGS) data from a Caenorhabditis elegans strain homozygous for the reciprocal translocation hT2(I;III) to identify its breakpoints molecularly. The translocation structure is fairly straightforward, with only minor secondary rearrangement in addition to the primary breakpoints. The graphical representation below depicts the two hT2 half-translocations for ease of conceptualization.

4.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34746683

ABSTRACT

We used whole-genome sequencing (WGS) data from a number of balanced lethal strains in Caenorhabditis elegans to show that the crossover suppressor qC1 is an inversion. The rearrangement is complex, with a large primary inversion that contains several other smaller inverted regions. The graphical representation below depicts these various qC1 rearrangements for ease of conceptualization. It is the simplest chromosomal structure compatible with the data currently available, but even then it is worth noting that the complexity of the qC1 chromosome can make the graphical reconstruction difficult to understand, and it may seem a bit like relativity theory or artwork from M.C. Escher (https://moa.byu.edu/m-c-eschers-relativity/).

5.
G3 (Bethesda) ; 10(11): 3977-3990, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32868407

ABSTRACT

Whether generated within a lab setting or isolated from the wild, variant alleles continue to be an important resource for decoding gene function in model organisms such as Caenorhabditis elegans With advances in massively parallel sequencing, multiple whole-genome sequenced (WGS) strain collections are now available to the research community. The Million Mutation Project (MMP) for instance, analyzed 2007 N2-derived, mutagenized strains. Individually, each strain averages ∼400 single nucleotide variants amounting to ∼80 protein-coding variants. The effects of these variants, however, remain largely uncharacterized and querying the breadth of these strains for phenotypic changes requires a method amenable to rapid and sensitive high-throughput analysis. Here we present a pooled competitive fitness approach to quantitatively phenotype subpopulations of sequenced collections via molecular inversion probes (PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources and classified these into five categories. We also demonstrate on a subset of these strains, that their fitness defects can be genetically mapped. Overall, our results suggest that approximately 80% of MMP mutant strains may have a decreased fitness relative to the lab reference, N2 The costs of generating this form of analysis through WGS methods would be prohibitive while PhenoMIP analysis in this manner is accomplished at less than one-tenth of projected WGS costs. We propose methods for applying PhenoMIP to a broad range of population selection experiments in a cost-efficient manner that would be useful to the community at large.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Molecular Probes , Mutation , Phenotype
6.
Genome Res ; 29(6): 1009-1022, 2019 06.
Article in English | MEDLINE | ID: mdl-31123080

ABSTRACT

Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.


Subject(s)
Caenorhabditis elegans/genetics , Genome, Helminth , Genomics , Animals , Caenorhabditis elegans Proteins/genetics , Computational Biology/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Reproducibility of Results
7.
G3 (Bethesda) ; 9(1): 135-144, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30420468

ABSTRACT

The Caenorhabditis elegans Gene Knockout Consortium is tasked with obtaining null mutations in each of the more than 20,000 open reading frames (ORFs) of this organism. To date, approximately 15,000 ORFs have associated putative null alleles. As there has been substantial success in using CRISPR/Cas9 in C. elegans, this appears to be the most promising technique to complete the task. To enhance the efficiency of using CRISPR/Cas9 to generate gene deletions in C. elegans we provide a web-based interface to access our database of guide RNAs (http://genome.sfu.ca/crispr). When coupled with previously developed selection vectors, optimization for homology arm length, and the use of purified Cas9 protein, we demonstrate a robust and effective protocol for generating deletions for this large-scale project. Debate and speculation in the larger scientific community concerning off-target effects due to non-specific Cas9 cutting has prompted us to investigate through whole genome sequencing the occurrence of single nucleotide variants and indels accompanying targeted deletions. We did not detect any off-site variants above the natural spontaneous mutation rate and therefore conclude that this modified protocol does not generate off-target events to any significant degree in C. elegans We did, however, observe a number of non-specific alterations at the target site itself following the Cas9-induced double-strand break and offer a protocol for best practice quality control for such events.


Subject(s)
CRISPR-Cas Systems/genetics , Caenorhabditis elegans/genetics , Gene Editing , Homologous Recombination/genetics , Animals , Gene Deletion , Gene Knockout Techniques , Gene Targeting , Mutagenesis/genetics
8.
G3 (Bethesda) ; 8(5): 1535-1544, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29507057

ABSTRACT

In a genetic screen to identify genes that promote GLP-1/Notch signaling in Caenorhabditis elegans germline stem cells, we found a single mutation, om40, defining a gene called ego-3. ego-3(om40) causes several defects in the soma and the germline, including paralysis during larval development, sterility, delayed proliferation of germline stem cells, and ectopic germline stem cell proliferation. Whole genome sequencing identified om40 as an allele of hsp-90, previously known as daf-21, which encodes the C. elegans ortholog of the cytosolic form of HSP90. This protein is a molecular chaperone with a central position in the protein homeostasis network, which is responsible for proper folding, structural maintenance, and degradation of proteins. In addition to its essential role in cellular function, HSP90 plays an important role in stem cell maintenance and renewal. Complementation analysis using a deletion allele of hsp-90 confirmed that ego-3 is the same gene. hsp-90(om40) is an I→N conservative missense mutation of a highly conserved residue in the middle domain of HSP-90 RNA interference-mediated knockdown of hsp-90 expression partially phenocopied hsp-90(om40), confirming the loss-of-function nature of hsp-90(om40) Furthermore, reduced HSP-90 activity enhanced the effect of reduced function of both the GLP-1 receptor and the downstream LAG-1 transcription factor. Taken together, our results provide the first experimental evidence of an essential role for HSP90 in Notch signaling in development.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Germ Cells/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Receptors, Notch/metabolism , Signal Transduction , Alleles , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Loss of Function Mutation/genetics , Phenotype , Physical Chromosome Mapping
9.
Genetics ; 207(2): 447-463, 2017 10.
Article in English | MEDLINE | ID: mdl-28827289

ABSTRACT

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2 We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.


Subject(s)
Caenorhabditis elegans/genetics , Chromosome Mapping/methods , Chromosomes/genetics , Mutation , Thermotolerance/genetics , Whole Genome Sequencing/methods , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Chromosome Mapping/standards , Whole Genome Sequencing/standards
10.
PLoS Negl Trop Dis ; 10(10): e0005058, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27755544

ABSTRACT

BACKGROUND: The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. METHODS/PRINCIPAL FINDINGS: Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. CONCLUSIONS/SIGNIFICANCE: The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.


Subject(s)
Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Nematode Infections/parasitology , Animals , Caenorhabditis elegans/physiology , Drug Evaluation, Preclinical , Humans , Nematoda/drug effects , Nematoda/genetics , Nematoda/physiology , Nematode Infections/drug therapy , Reverse Genetics
11.
PLoS Genet ; 12(8): e1006235, 2016 08.
Article in English | MEDLINE | ID: mdl-27508411

ABSTRACT

Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.


Subject(s)
Eye Abnormalities/genetics , Morphogenesis/genetics , N-Acetylglucosaminyltransferases/genetics , Sensory Receptor Cells/metabolism , Animals , Brain/metabolism , Brain/pathology , Caenorhabditis elegans/genetics , Cilia/genetics , Cilia/metabolism , Eye Abnormalities/pathology , Genome , Humans , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation , Phenotype , Sensory Receptor Cells/pathology , Walker-Warburg Syndrome/genetics , trans-Golgi Network/genetics
12.
BMC Genomics ; 16: 1044, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26645535

ABSTRACT

BACKGROUND: Gene copy-number variation (CNVs), which provides the raw material for the evolution of novel genes, is widespread in natural populations. We investigated whether CNVs constitute a common mechanism of genetic change during adaptation in experimental Caenorhabditis elegans populations. Outcrossing C. elegans populations with low fitness were evolved for >200 generations. The frequencies of CNVs in these populations were analyzed by oligonucleotide array comparative genome hybridization, quantitative PCR, PCR, DNA sequencing across breakpoints, and single-worm PCR. RESULTS: Multiple duplications and deletions rose to intermediate or high frequencies in independent populations. Several lines of evidence suggest that these changes were adaptive: (i) copy-number changes reached high frequency or were fixed in a short time, (ii) many independent populations harbored CNVs spanning the same genes, and (iii) larger average size of CNVs in adapting populations relative to spontaneous CNVs. The latter is expected if larger CNVs are more likely to encompass genes under selection for a change in gene dosage. Several convergent CNVs originated in populations descended from different low fitness ancestors as well as high fitness controls. CONCLUSIONS: We show that gene copy-number changes are a common class of adaptive genetic change. Due to the high rates of origin of spontaneous duplications and deletions, copy-number changes containing the same genes arose readily in independent populations. Duplications that reached high frequencies in these adapting populations were significantly larger in span. Many convergent CNVs may be general adaptations to laboratory conditions. These results demonstrate the great potential borne by CNVs for evolutionary adaptation.


Subject(s)
Caenorhabditis elegans/genetics , DNA Copy Number Variations , Evolution, Molecular , Gene Dosage , Adaptation, Biological/genetics , Animals , Crosses, Genetic , Gene Deletion , Gene Duplication , Genetic Fitness , Genetic Variation , Genetics, Population , Mutation , Repetitive Sequences, Nucleic Acid
13.
Genome Res ; 23(10): 1749-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800452

ABSTRACT

We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worm's more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Mutation , Alleles , Animals , Caenorhabditis elegans/classification , Codon, Nonsense , DNA Copy Number Variations , DNA, Ribosomal , Databases, Nucleic Acid , Genes, Essential , Genes, Suppressor , Genetic Variation , Genome, Helminth , Genome, Mitochondrial , Heterozygote , INDEL Mutation , Male , Mutation, Missense , Phenotype , Polymorphism, Single Nucleotide , Tandem Repeat Sequences
14.
Nat Protoc ; 7(8): 1502-10, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22814389

ABSTRACT

For the nematode Caenorhabditis elegans, automated selection of animals of specific genotypes from a mixed pool has become essential for genetic interaction or chemical screens. To date, such selection has been accomplished using specialized instruments. However, access to such dedicated equipment is not common. Here we describe live animal fluorescence-activated cell sorting (laFACS), a protocol for automatic selection of live first larval stage (L1) animals using a standard FACS system. We show that FACS can be used for the precise identification of GFP-expressing and non-GFP-expressing subpopulations and can accomplish high-speed sorting of live animals. We have routinely collected 100,000 or more homozygotes from a mixed starting population within 2 h, and with greater than 99% purity. The sorted animals continue to develop normally, making this protocol ideally suited for the isolation of terminal mutants for use in genetic interaction or chemical genetic screens.


Subject(s)
Caenorhabditis elegans , Flow Cytometry/methods , High-Throughput Screening Assays/methods , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Flow Cytometry/instrumentation , Green Fluorescent Proteins/genetics , High-Throughput Screening Assays/instrumentation , Homozygote , Larva
15.
Genetics ; 185(2): 431-41, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20439774

ABSTRACT

Deep sequencing offers an unprecedented view of an organism's genome. We describe the spectrum of mutations induced by three commonly used mutagens: ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and ultraviolet trimethylpsoralen (UV/TMP) in the nematode Caenorhabditis elegans. Our analysis confirms the strong GC to AT transition bias of EMS. We found that ENU mainly produces A to T and T to A transversions, but also all possible transitions. We found no bias for any specific transition or transversion in the spectrum of UV/TMP-induced mutations. In 10 mutagenized strains we identified 2723 variants, of which 508 are expected to alter or disrupt gene function, including 21 nonsense mutations and 10 mutations predicted to affect mRNA splicing. This translates to an average of 50 informative mutations per strain. We also present evidence of genetic drift among laboratory wild-type strains derived from the Bristol N2 strain. We make several suggestions for best practice using massively parallel short read sequencing to ensure mutation detection.


Subject(s)
Caenorhabditis elegans/genetics , Mutagenesis , Animals , Ethyl Methanesulfonate , Ethylnitrosourea , Genome , Mutagens , Mutation , Phenotype , Trioxsalen
16.
BMC Genomics ; 11: 62, 2010 Jan 25.
Article in English | MEDLINE | ID: mdl-20100350

ABSTRACT

BACKGROUND: Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. RESULTS: We have used array comparative genomic hybridization (aCGH) to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258) carry the largest number of deletions, followed by the Vancouver strain (KR314). Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. CONCLUSION: Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.


Subject(s)
Caenorhabditis elegans/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Genome, Helminth , Animals , DNA, Helminth/genetics , INDEL Mutation , Linkage Disequilibrium , Recombination, Genetic , Sequence Deletion
17.
Genetics ; 181(4): 1673-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19189945

ABSTRACT

Array comparative genomic hybridization (aCGH) has been used primarily to detect copy-number variants between two genomes. Here we report using aCGH to detect single nucleotide mutations on oligonucleotide microarrays with overlapping 50-mer probes. This technique represents a powerful method for rapidly detecting novel homozygous single nucleotide mutations in any organism with a sequenced reference genome.


Subject(s)
Caenorhabditis elegans/genetics , Comparative Genomic Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Algorithms , Animals , Databases, Genetic , Genome, Helminth , Genomics/methods , Point Mutation , Software
18.
Genetics ; 181(1): 33-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18957702

ABSTRACT

We have developed a significantly improved and simplified method for high-resolution mapping of phenotypic traits in Caenorhabditis elegans using a combination of single nucleotide polymorphisms (SNPs) and oligo array comparative genome hybridization (array CGH). We designed a custom oligonucleotide array using a subset of confirmed SNPs between the canonical wild-type Bristol strain N2 and the Hawaiian isolate CB4856, populated with densely overlapping 50-mer probes corresponding to both N2 and CB4856 SNP sequences. Using this method a mutation can be mapped to a resolution of approximately 200 kb in a single genetic cross. Six mutations representing each of the C. elegans chromosomes were detected unambiguously and at high resolution using genomic DNA from populations derived from as few as 100 homozygous mutant segregants of mutant N2/CB4856 heterozygotes. Our method completely dispenses with the PCR, restriction digest, and gel analysis of standard SNP mapping and should be easy to extend to any organism with interbreeding strains. This method will be particularly powerful when applied to difficult or hard-to-map low-penetrance phenotypes. It should also be possible to map polygenic traits using this method.


Subject(s)
Caenorhabditis elegans/genetics , Chromosome Mapping/methods , Comparative Genomic Hybridization/methods , Polymorphism, Single Nucleotide/genetics , Animals , Chromosomes/genetics , Crosses, Genetic , Female , Genome, Helminth/genetics , Male , Mutation/genetics , Oligonucleotide Probes/genetics
19.
Genome Res ; 17(3): 337-47, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17267812

ABSTRACT

We have developed array Comparative Genomic Hybridization for Caenorhabditis elegans as a means of screening for novel induced deletions in this organism. We designed three microarrays consisting of overlapping 50-mer probes to annotated exons and micro-RNAs, the first with probes to chromosomes X and II, the second with probes to chromosome II alone, and a third to the entire genome. These arrays were used to reliably detect both a large (50 kb) multigene deletion and a small (1 kb) single-gene deletion in homozygous and heterozygous samples. In one case, a deletion breakpoint was resolved to fewer than 50 bp. In an experiment designed to identify new mutations we used the X:II and II arrays to detect deletions associated with lethal mutants on chromosome II. One is an 8-kb deletion targeting the ast-1 gene on chromosome II and another is a 141-bp deletion in the gene C06A8.1. Others span large sections of the chromosome, up to >750 kb. As a further application of array Comparative Genomic Hybridization in C. elegans we used the whole-genome array to detect the extensive natural gene content variation (almost 2%) between the N2 Bristol strain and the strain CB4856, a strain isolated in Hawaii and JU258, a strain isolated in Madeira.


Subject(s)
Caenorhabditis elegans/genetics , Chromosomes/genetics , Gene Deletion , Genomics/methods , Microarray Analysis/methods , Nucleic Acid Hybridization/methods , Animals , Atlantic Islands , Exons/genetics , Fluorescence , Hawaii , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...