Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 4530, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540740

ABSTRACT

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.


Subject(s)
Coculture Techniques/methods , Diclofenac/pharmacokinetics , Lab-On-A-Chip Devices , Liver/metabolism , Animals , Drug Evaluation, Preclinical , Humans , Microchip Analytical Procedures , Models, Biological , Phenotype , Rats
2.
AAPS J ; 19(5): 1499-1512, 2017 09.
Article in English | MEDLINE | ID: mdl-28752430

ABSTRACT

Investigation of the pharmacokinetics (PK) of a compound is of significant importance during the early stages of drug development, and therefore several in vitro systems are routinely employed for this purpose. However, the need for more physiologically realistic in vitro models has recently fueled the emerging field of tissue-engineered 3D cultures, also referred to as organs-on-chips, or microphysiological systems (MPSs). We have developed a novel fluidic platform that interconnects multiple MPSs, allowing PK studies in multi-organ in vitro systems along with the collection of high-content quantitative data. This platform was employed here to integrate a gut and a liver MPS together in continuous communication, and investigate simultaneously different PK processes taking place after oral drug administration in humans (e.g., intestinal permeability, hepatic metabolism). Measurement of tissue-specific phenotypic metrics indicated that gut and liver MPSs can be fluidically coupled with circulating common medium without compromising their functionality. The PK of diclofenac and hydrocortisone was investigated under different experimental perturbations, and results illustrate the robustness of this integrated system for quantitative PK studies. Mechanistic model-based analysis of the obtained data allowed the derivation of the intrinsic parameters (e.g., permeability, metabolic clearance) associated with the PK processes taking place in each MPS. Although these processes were not substantially affected by the gut-liver interaction, our results indicate that inter-MPS communication can have a modulating effect (hepatic metabolism upregulation). We envision that our integrative approach, which combines multi-cellular tissue models, multi-MPS platforms, and quantitative mechanistic modeling, will have broad applicability in pre-clinical drug development.


Subject(s)
Diclofenac/pharmacokinetics , Hydrocortisone/pharmacokinetics , Intestinal Mucosa/metabolism , Liver/metabolism , Humans , In Vitro Techniques
3.
Biomaterials ; 35(35): 9447-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25150889

ABSTRACT

The field of polymer-based membrane engineering has expanded since we first demonstrated the reaction of N-hydroxysuccinimide ester-terminated polymers with cells and tissues almost two decades ago. One remaining obstacle, especially for conjugation of polymers to cells, has been that exquisite control over polymer structure and functionality has not been used to influence the behavior of cells. Herein, we describe a multifunctional atom transfer radical polymerization initiator and its use to synthesize water-soluble polymers that are modified with bisphosphonate side chains and then covalently bound to the surface of live cells. The polymers contained between 1.7 and 3.1 bisphosphonates per chain and were shown to bind to hydroxyapatite crystals with kinetics similar to free bisphosphonate binding. We engineered the membranes of both HL-60 cells and mesenchymal stem cells in order to impart polymer-guided bone adhesion properties on the cells. Covalent coupling of the polymer to the non-adherent HL-60 cell line or mesenchymal stem cells was non-toxic by proliferation assays and enhanced the binding of these cells to bone.


Subject(s)
Bone and Bones/metabolism , Cell Membrane/chemistry , Diphosphonates/chemistry , Polymerization , Polymers/chemistry , Tissue Engineering/methods , Animals , Bone and Bones/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Proliferation/physiology , HL-60 Cells , Humans , Hydrogen-Ion Concentration , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Rats , Rats, Sprague-Dawley , Succinimides/chemistry , Surface Properties/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...