Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(3): 445-455, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30478033

ABSTRACT

Locus coeruleus (LC) neurons, the source of hippocampal norepinephrine (NE), are activated by novelty and changes in environmental contingencies. Based on the role of monoamines in reconfiguring invertebrate networks, and data from mammalian systems, a network reset hypothesis for the effects of LC activation has been proposed. We used the cellular compartmental analysis of temporal FISH technique based on the cellular distribution of immediate early genes to examine the effect of LC activation and inactivation, on regional hippocampal maps in male rats, when LC activity was manipulated just before placement in a second familiar (A/A) and/or novel environment (A/B). We found that bilateral phasic, but not tonic, activation of LC reset hippocampal maps in the A/A condition, whereas silencing the LC with clonidine before placement in the A/B condition blocked map reset and a familiar map emerged in the dentate gyrus, proximal and distal CA1, and CA3c. However, CA3a and CA3b encoded the novel environment. These results support a role for phasic LC responses in generating novel hippocampal sequences during memory encoding and, potentially, memory updating. The silencing experiments suggest that novel environments may not be recognized as different by dentate gyrus and CA1 without LC input. The functional distinction between phasic and tonic LC activity argues that these parameters are critical for determining network changes. These data are consistent with the hippocampus activating internal network representations to encode novel experiential episodes and suggest LC input is critical for this role.SIGNIFICANCE STATEMENT Burst activation of the broadly projecting novelty signaling system of the locus coeruleus initiates new network representations throughout the hippocampus despite unchanged external environments. Tonic activation does not alter network representations in the same condition. This suggests differences in the temporal parameters of neuromodulator network activation are critical for neuromodulator function. Silencing this novelty signaling system prevented the appearance of new network representations in a novel environment. Instead, familiar representations were expressed in a subset of hippocampal areas, with another subset encoding the novel environment. This "being in two places at once" argues for independent functional regions within the hippocampus. These experiments strengthen the view that internal states are major determinants of the brain's construction of environmental representations.


Subject(s)
Environment , Locus Coeruleus/physiology , Orientation/physiology , Recognition, Psychology/physiology , Adrenergic alpha-Agonists/pharmacology , Animals , Brain Mapping , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Clonidine/pharmacology , Dentate Gyrus/physiology , Genes, Immediate-Early/genetics , Image Processing, Computer-Assisted , Male , Memory/drug effects , Nerve Net/physiology , Rats , Rats, Sprague-Dawley
2.
Hippocampus ; 22(3): 501-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21240916

ABSTRACT

Norepinephrine (NE) in vitro produces long-lasting potentiation of medial perforant path input and depression of lateral perforant path input to dentate gyrus in the rat. Similar, but highly transient, effects have been reported in vivo using paragigantocellular stimulation to release NE. The present study uses alternate stimulation of the medial perforant path and lateral olfactory tract (eliciting a lateral perforant path-evoked potential) to examine the effects of glutamatergic activation of locus coeruleus (LC) on the two pathways for up to 3 h post-LC activation. In the first experiment, the expected potentiation of the medial perforant path population spike in dentate gyrus was observed, but without accompanying depression of the lateral perforant path-mediated evoked potential (lateral olfactory tract stimulation, 60 s ISI). In a second experiment, with more frequent pairing of input with NE release (10 s ISI), significant potentiation of lateral perforant path-mediated input to dentate gyrus occurred, but potentiation of medial perforant path input was not seen. A third experiment with a 30 s ISI again produced potentiation of lateral perforant path-mediated input without potentiation of the medial perforant path population spike. The size of effects with the 30 s ISI was intermediate between that seen with 10 s and 60 s ISI. Potentiation of lateral perforant path over medial perforant path input has previously been reported with acute nicotinic activation of the LC. This outcome also resembles heterosynaptic modulation previously reported with tetanic potentiation. The data argue for a competitive relationship between medial and lateral perforant path inputs to dentate gyrus and suggest pairing with increased NE produces a bias favoring one or the other pathway depending on parameters such as strength and frequency. NE potentiating effects on lateral perforant path input here may also have occurred in entorhinal cortex (EC) given the system-wide NE release with LC activation.


Subject(s)
Evoked Potentials/physiology , Glutamic Acid/physiology , Hippocampus/physiology , Locus Coeruleus/physiology , Perforant Pathway/physiology , Synaptic Transmission/physiology , Animals , Electric Stimulation , Male , Norepinephrine/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...