Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005802

ABSTRACT

The present work was conducted to evaluate the volatile profile of Ecuadorian Forastero, CCN-51, ETT103 and LR14 cocoa beans during traditional fermentation in laurel wood boxes followed by a sun-drying process. Fifty-six volatiles were identified with HS-SPME-GC-MS. Aldehydes, alcohols and ketones were the compounds that mainly characterized the fresh cocoa. The main compounds formed during the anaerobic fermentation step were esters and acids, while in the aerobic fermentation step, an increase in ester-, aldehyde- and acid-type compounds was observed. Finally, after the drying step, a notable increase in the acid (i.e., acetic acid) content was the predominant trend. According to the genotypes, ETT103 presented high contents of terpenes, alcohols, aldehydes and ketones and low contents of unfavorable acid compounds. The CCN-51 and LR14 (Trinitarian) varieties stood out for their highest amounts in acids (i.e., acetic acid) at the end of primary processing. Finally, the Forastero cocoa beans were highlighted for their low acid and high trimethylpyrazine contents. According to the chemometric and Venn diagram analyses, ETT-103 was an interestingly high-aromatic-quality variety for cocoa gourmet preparations. The results also showed the need for good control of the processing steps (using prefermentative treatments, starter cultures, etc.) on Ecuadorian genotypes of Trinitarian origin.

2.
Plants (Basel) ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570934

ABSTRACT

The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers.

SELECTION OF CITATIONS
SEARCH DETAIL
...