Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 39(1): 65-77, 2024 01.
Article in English | MEDLINE | ID: mdl-37940503

ABSTRACT

While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.


Subject(s)
Magnoliopsida , Microbiota , Bees , Animals , Symbiosis , Pollen , Pollination , Flowers
2.
Am J Bot ; 104(8): 1266-1273, 2017 08.
Article in English | MEDLINE | ID: mdl-29756225

ABSTRACT

PREMISE OF THE STUDY: Despite attempts to degrade the sporopollenin in pollen walls, this material has withstood a hundred years of experimental treatments and thousands of years of environmental attack in insects and soil. We present evidence that sporopollenin, nonetheless, locally degrades only minutes after pollination in Arabidopsis thaliana flowers, and describe here a two-part pollen germination mechanism in A. thaliana involving both chemical weakening of the exine wall and swelling of the underlying intine. METHODS: We explored naturally occurring components from pollen and stigma surfaces and found a tripartite mix of hydrogen peroxide, peroxidase and catalase enzymes (all at high levels at the pollination interface) to be experimentally sufficient to degrade the sporopollenin of some Brassicaceae family members. KEY RESULTS: At pollination, factors carried on the pollen surface may mix with factors on the stigma surface in a reaction that locally oxidizes the exine pollen wall. Hydrogen peroxide, catalases, and peroxidases are biologically present at the right time and place and, when mixed experimentally, are sufficient to degrade the walls of susceptible pollen. CONCLUSIONS: Our work on native biochemistry for breaching sporopollenin suggests new research directions in pollen aperture evolution and could aid efforts to analyze sporopollenin's composition, needed for application of this corrosion-resistant, but long-intractable material.


Subject(s)
Biopolymers/metabolism , Brassicaceae/physiology , Carotenoids/metabolism , Pollen/physiology , Arabidopsis/physiology , Flowers/physiology , Germination , Pollination
3.
Am J Bot ; 103(6): 1006-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27335390

ABSTRACT

PREMISE OF THE STUDY: Most pollen walls are interrupted by apertures, thin areas providing access to stigmatic fluids and exit points for pollen tubes. Unexpectedly, pollen tubes of Arabidopsis thaliana are not obligated to pass through apertures and can instead take the shortest route into the stigma, passing directly through a nonaperturate wall. METHODS: We used stains and confocal microscopy to follow early pollen tube formation in A. thaliana and 200+ other species. We germinated pollen in vitro and in situ (at control and high humidities) and also used atomic force microscopy to assay material properties of nonaperture and aperture walls. KEY RESULTS: Pollen tubes of A. thaliana breached nonaperture walls despite these being an order of magnitude stiffer than aperture walls. Breakout was associated with localized swelling of the pectin-rich (alcian blue positive) intine. The precision of pollen tube exit at the pollen-stigma interface was lost at high humidity. Pollen from ∼4% of the species surveyed exhibited breakout germination behavior; all nine breakout species identified so far are in the Brassicaceae family (∼25% of the Brassicaceae sampled) and are scattered across seven tribes. CONCLUSIONS: The polarity of pollen germination in A. thaliana is externally induced, not linked to aperture location. The biomechanical force for breaking nonaperture walls is found in localized swelling of intine pectins. As such, the pollen from A. thaliana, and likely many Brassicaceae family members, are functionally omniaperturate. This new mechanism for germination between extant apertures raises questions about exine porosity and the diversity of mechanisms across taxa.


Subject(s)
Arabidopsis/physiology , Brassicaceae/physiology , Cell Wall/physiology , Pollen/physiology , Germination , Humidity , Microscopy, Atomic Force , Pectins/metabolism , Phylogeny , Pollen Tube/physiology , Seeds/physiology
4.
Dev Dyn ; 242(10): 1134-46, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23813905

ABSTRACT

BACKGROUND: During Xenopus laevis neurulation, neural ectodermal cells of the spinal cord are patterned at the same time that they intercalate mediolaterally and radially, moving within and between two cell layers. Curious if these rearrangements disrupt early cell identities, we lineage-traced cells in each layer from neural plate stages to the closed neural tube, and used in situ hybridization to assay gene expression in the moving cells. RESULTS: Our biotin and fluorescent labeling of deep and superficial cells reveals that mediolateral intercalation does not disrupt cell cohorts; in other words, it is conservative. However, outside the midline notoplate, later radial intercalation does displace superficial cells dorsoventrally, radically disrupting cell cohorts. The tube roof is composed almost exclusively of superficial cells, including some displaced from ventral positions; gene expression in these displaced cells must now be surveyed further. Superficial cells also flank the tube's floor, which is, itself, almost exclusively composed of deep cells. CONCLUSIONS: Our data provide: (1) a fate map of superficial- and deep-cell positions within the Xenopus neural tube, (2) the paths taken to these positions, and (3) preliminary evidence of re-patterning in cells carried out of one environment and into another, during neural morphogenesis.


Subject(s)
Ectoderm/embryology , Embryo, Nonmammalian/embryology , Neurogenesis/physiology , Neurulation/physiology , Spinal Cord/embryology , Animals , Ectoderm/cytology , Embryo, Nonmammalian/cytology , Spinal Cord/cytology , Xenopus laevis
5.
Annu Rev Genet ; 38: 793-818, 2004.
Article in English | MEDLINE | ID: mdl-15568994

ABSTRACT

For pollination to succeed, pollen must carry sperm through a variety of different floral tissues to access the ovules within the pistil. The pistil provides everything the pollen requires for success in this endeavor including distinct guidance cues and essential nutrients that allow the pollen tube to traverse enormous distances along a complex path to the unfertilized ovule. Although the pistil is a great facilitator of pollen function, it can also be viewed as an elaborate barrier that shields ovules from access from inappropriate pollen, such as pollen from other species. Each discrete step taken by pollen tubes en route to the ovules is a potential barrier point to ovule access and waste by inappropriate mates. In this review, we survey the current molecular understanding of how pollination proceeds, and ask to what extent is each step important for mate discrimination. As this field progresses, this synthesis of functional biology and evolutionary studies will provide insight into the molecular basis of the species barriers that maintain the enormous diversity seen in flowering plants.


Subject(s)
Plant Development , Pollen/growth & development , Biological Evolution , Fertilization , Germination , Models, Genetic , Plant Physiological Phenomena , Plants/metabolism , Pollen/metabolism , Species Specificity , gamma-Aminobutyric Acid/pharmacology
7.
Cell ; 114(1): 47-59, 2003 Jul 11.
Article in English | MEDLINE | ID: mdl-12859897

ABSTRACT

During angiosperm reproduction, pollen grains form a tube that navigates through female tissues to the micropyle, delivering sperm to the egg; the signals that mediate this process are poorly understood. Here, we describe a role for gamma-amino butyric acid (GABA) in pollen tube growth and guidance. In vitro, GABA stimulates pollen tube growth, although vast excesses are inhibitory. The Arabidopsis POP2 gene encodes a transaminase that degrades GABA and contributes to the formation of a gradient leading up to the micropyle. pop2 flowers accumulate GABA, and the growth of many pop2 pollen tubes is arrested, consistent with their in vitro GABA hypersensitivity. Some pop2 tubes continue to grow toward ovules, yet they are misguided, presumably because they target ectopic GABA on the ovule surface. Interestingly, wild-type tubes exhibit normal growth and guidance in pop2 pistils, perhaps by degrading excess GABA and sharpening the gradient leading to the micropyle.


Subject(s)
Arabidopsis Proteins , Arabidopsis/growth & development , Arabidopsis/genetics , Fertilization/genetics , Flowers/growth & development , Flowers/genetics , Transcription Factors/deficiency , gamma-Aminobutyric Acid/metabolism , Arabidopsis/cytology , Flowers/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Growth Substances/genetics , Growth Substances/metabolism , Signal Transduction/genetics , Transaminases/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...