Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(9): e202211461, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36156351

ABSTRACT

Currently, less favorable C=O hydrogenation and weak concerted acid catalysis cause unsatisfactory catalytic performance in the upgrading of biomass-derived furfurals (i.e., furfural, 5-methyl furfural, and 5-hydroxymethyl furfural) to ketones (i.e., cyclopentanone, 2,5-hexanedione, and 1-hydroxyl-2,5-hexanedione). A series of partially oxidized MAX phase (i.e., Ti3 AlC2 , Ti2 AlC, Ti3 SiC2 ) supporting Pd catalysts were fabricated, which showed high catalytic activity; Pd/Ti3 AlC2 in particular displayed high performance for conversion of furfurals into targeted ketones. Detailed studies of the catalytic mechanism confirm that in situ hydrogen spillover generates Frustrated Lewis H+ -H- pairs, which not only act as the hydrogenation sites for selective C=O hydrogenation but also provide acid sites for ring opening. The close intimate hydrogenation and acid sites promote bifunctional catalytic reactions, substantially reducing the reported minimum reaction temperature of various furfurals by at least 30-60 °C.

2.
J Am Chem Soc ; 143(37): 15440-15452, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34478267

ABSTRACT

Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C-C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis.

3.
Chem Sci ; 12(25): 8791-8802, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34257879

ABSTRACT

Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1-Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C-O bond activating catalytic reactions of esters.

4.
Chem Sci ; 12(2): 517-532, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-34163781

ABSTRACT

The addition of foreign element dopants to monometallic nanoparticle catalysts is of great importance in industrial applications. Both substitutional and interstitial doping of pure metallic phases can give profound effects such as altering electronic and transport properties, lattice parameters, phase transitions, and consequently various physicochemical properties. For transition metal catalysts, this often leads to changes in catalytic activity and selectivity. This article provides an overview of the recent developments regarding the catalytic properties and characterisation of such systems. In particular, the structure-activity relationship for a number of important chemical reactions is summarised and the future prospects of this area are also explored.

5.
Chem Sci ; 12(2): 688-695, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-34163801

ABSTRACT

The catalytic synthesis of NH3 from the thermodynamically challenging N2 reduction reaction under mild conditions is currently a significant problem for scientists. Accordingly, herein, we report the development of a nitrogenase-inspired inorganic-based chalcogenide system for the efficient electrochemical conversion of N2 to NH3, which is comprised of the basic structure of [Fe-S2-Mo]. This material showed high activity of 8.7 mgNH3 mgFe -1 h-1 (24 µgNH3 cm-2 h-1) with an excellent faradaic efficiency of 27% for the conversion of N2 to NH3 in aqueous medium. It was demonstrated that the Fe1 single atom on [Fe-S2-Mo] under the optimal negative potential favors the reduction of N2 to NH3 over the competitive proton reduction to H2. Operando X-ray absorption and simulations combined with theoretical DFT calculations provided the first and important insights on the particular electron-mediating and catalytic roles of the [Fe-S2-Mo] motifs and Fe1, respectively, on this two-dimensional (2D) molecular layer slab.

6.
Chem Sci ; 12(1): 210-219, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-34168741

ABSTRACT

Catalytic conversion of methanol to aromatics and hydrocarbons is regarded as a key alternative technology to oil processing. Although the inclusion of foreign metal species in H-ZSM-5 containing Brønsted acid site (BAS) is commonly found to enhance product yields, the nature of catalytically active sites and the rationalization for catalytic performance still remain obscure. Herein, by acquiring comparable structural parameters by both X-ray and neutron powder diffractions over a number of metal-modified ZSM-5 zeolites, it is demonstrated for the first time that active pairs of metal site-BAS within molecular distance is created when single and isolated transition metal cation is ion-exchanged with the zeolites. According to our DFT model, this could lead to the initial heterolytic cleavage of small molecules such as water and methanol by the pair with subsequent reactions to form products at high selectivity as that observed experimentally. It may account for their active and selective catalytic routes of small molecule activations.

7.
Chem Sci ; 9(9): 2493-2500, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29732126

ABSTRACT

As the chemical state of titanium on the surface of TiO2 can be tuned by varying its host facet and surface adsorbate, improved performance has been achieved in fields such as heterogeneous (photo)catalysis, lithium batteries, dye-sensitized solar cells, etc. However, at present, no acceptable surface technique can provide information about the chemical state and distribution of surface cations among facets, making it difficult to unambiguously correlate facet-dependent properties. Even though X-ray photoelectron spectroscopy (XPS) is regarded as a sensitive surface technique, it collects data from the top few layers of the sample, instead of a specific facet, and hence fails to distinguish small changes in the chemical state of Ti imposed by adsorbates on a facet. Herein, based on experimental (chemical probe-assisted NMR) and theoretical (DFT) studies, the true surface Ti chemical states associated with surface modification using -O-, -F, -OH and -SO4 functional groups on the (001) and (101) facets of anatase TiO2 are clearly distinguished. It is also demonstrated, for the first time, that the local electronic effects on surface Ti imposed by adsorbates vary depending on the facet, due to different intrinsic electronic structures.

8.
J Am Chem Soc ; 140(21): 6661-6667, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29660275

ABSTRACT

Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MASs) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MASs are immobilized inside zeolite pores by Brønsted acid sites (BASs) on the inner surface. It is demonstrated that unoccupied BASs in atomic proximity to MASs enhance olefin adsorption and facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes place over the BAS-MAS pair inside the zeolite cavity. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under mild reaction conditions, the propene production rate over WO x/USY is ca. 7300 times that over the industrial WO3/SiO2-based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WO x/USY for a wide range of reaction conditions.

9.
Chem Commun (Camb) ; 53(3): 601-604, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27981327

ABSTRACT

It is demonstrated that light elements, including lithium and boron atoms, can take residence in the octahedral (interstitial) site of a Pd lattice by modifying the electronic properties of the metal nanoparticles, and hence the adsorptive strength of a reactant. The blocking of the sub-surface sites to H in the modified materials results in significantly higher selectivity for the partial catalytic hydrogenation of acetylene to ethylene.


Subject(s)
Acetylene/chemistry , Boron/chemistry , Lithium/chemistry , Palladium/chemistry , Catalysis , Hydrogenation
10.
Chem Commun (Camb) ; 52(93): 13596-13599, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27808289

ABSTRACT

Incorporation of CdS quantum dots is shown to significantly promote photocatalytic hydrogen production from water over single-layer MoS2 in a remote manner via their dispersions on a carbon nanotube as a nanocomposite: the hydrogen evolution rate is found to be critically dependent on the content and structural integrity of the carbon nanotube such that the double-walled carbon nanotube shows superior H2 production to a single-walled carbon nanotube because the inner carbon tubules survive from the structural damage during functionalization.

SELECTION OF CITATIONS
SEARCH DETAIL
...