Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(20): 14335-14356, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37823891

ABSTRACT

Tyrosine kinase 2 (TYK2) is a nonreceptor tyrosine kinase that belongs to the JAK family also comprising JAK1, JAK2, and JAK3. TYK2 is an attractive target for various autoimmune diseases as it regulates signal transduction downstream of IL-23 and IL-12 receptors. Selective TYK2 inhibition offers a differentiated clinical profile compared to currently approved JAK inhibitors. However, selectivity for TYK2 versus other JAK family members has been difficult to achieve with small molecules that inhibit the catalytically active kinase domain. Successful targeting of the TYK2 pseudokinase domain as a strategy to achieve isoform selectivity was recently exemplified with deucravacitinib. Described herein is the optimization of selective TYK2 inhibitors targeting the pseudokinase domain, resulting in the discovery of the clinical candidate ABBV-712 (21).


Subject(s)
Autoimmune Diseases , TYK2 Kinase , Humans , Janus Kinases
2.
PLoS One ; 13(9): e0203567, 2018.
Article in English | MEDLINE | ID: mdl-30192846

ABSTRACT

The ability to restrict low molecular weight compounds to the gastrointestinal (GI) tract may enable an enhanced therapeutic index for molecular targets known to be associated with systemic toxicity. Using a triazolopyrazine CSF1R inhibitor scaffold, a broad range of prodrugs were synthesized and evaluated for enhanced delivery to the colon in mice. Subsequently, the preferred cyclodextrin prodrug moiety was appended to a number of CSF1R inhibitory active parent molecules, enabling GI-restricted delivery. Evaluation of a cyclodextrin prodrug in a dextran sodium sulfate (DSS)-induced mouse colitis model resulted in enhanced GI tissue levels of active parent. At a dose where no significant depletion of systemic monocytes were detected, the degree of pharmacodynamic effect-measured as reduction in macrophages in the colon-was inferior to that observed with a systemically available positive control. This suggests that a suitable therapeutic index cannot be achieved with CSF1R inhibition by using GI-restricted delivery in mice. However, these efforts provide a comprehensive frame-work in which to pursue additional gut-restricted delivery strategies for future GI targets.


Subject(s)
Colitis/immunology , Cyclodextrins/chemistry , Prodrugs/administration & dosage , Prodrugs/chemical synthesis , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Animals , Colitis/chemically induced , Colitis/drug therapy , Colon/chemistry , Dextran Sulfate/adverse effects , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Macrophages/drug effects , Macrophages/metabolism , Mice , Models, Molecular , Molecular Structure , Prodrugs/chemistry , Prodrugs/pharmacokinetics
4.
J Med Chem ; 58(1): 333-46, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25254961

ABSTRACT

We previously demonstrated that selective inhibition of protein kinase Cθ (PKCθ) with triazinone 1 resulted in dose-dependent reduction of paw swelling in a mouse model of arthritis.1,2 However, a high concentration was required for efficacy, thus providing only a minimal safety window. Herein we describe a strategy to deliver safer compounds based on the hypothesis that optimization of potency in concert with good oral pharmacokinetic (PK) properties would enable in vivo efficacy at reduced exposures, resulting in an improved safety window. Ultimately, transformation of 1 yielded analogues that demonstrated excellent potency and PK properties and fully inhibited IL-2 production in an acute model. In spite of good exposure, twice-a-day treatment with 17l in the glucose-6-phosphate isomerase chronic in vivo mouse model of arthritis yielded only moderate efficacy. On the basis of the exposure achieved, we conclude that PKCθ inhibition alone is insufficient for complete efficacy in this rodent arthritis model.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Isoenzymes/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Arthritis, Experimental/metabolism , Crystallography, X-Ray , Disease Models, Animal , Humans , Interleukin-2/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Male , Mice , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Protein Kinase C-theta , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Treatment Outcome
5.
J Med Chem ; 58(1): 222-36, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25000588

ABSTRACT

Protein kinase Cθ (PKCθ) regulates a key step in the activation of T cells. On the basis of its mechanism of action, inhibition of this kinase is hypothesized to serve as an effective therapy for autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and psoriasis. Herein, the discovery of a small molecule PKCθ inhibitor is described, starting from a fragment hit 1 and advancing to compound 41 through the use of structure-based drug design. Compound 41 demonstrates excellent in vitro activity, good oral pharmacokinetics, and efficacy in both an acute in vivo mechanistic model and a chronic in vivo disease model but suffers from tolerability issues upon chronic dosing.


Subject(s)
Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Area Under Curve , Arthritis, Experimental/drug therapy , Biological Availability , Cells, Cultured , Chromatography, Liquid , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Discovery , Female , Humans , Isoenzymes/metabolism , Mass Spectrometry , Mice, Inbred BALB C , Mice, Inbred DBA , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase C/metabolism , Protein Kinase C-theta , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , T-Lymphocytes/drug effects
6.
Bioorg Med Chem Lett ; 23(4): 1046-50, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312472

ABSTRACT

We report the SAR around a series of 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase. 2-Aminophenethyl analogs demonstrate excellent potency but moderate kinase selectivity, while 2-aminobenzyl analogs that fill the Ala571 subpocket exhibit good inhibition activity and excellent kinase selectivity.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Animals , Humans , Mice , Structure-Activity Relationship , Substrate Specificity
7.
Bioorg Med Chem Lett ; 23(4): 1051-5, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312943

ABSTRACT

Optimization of the ADME properties of a series of 2,4-diaminopyrimidine-5-carboxamide inhibitors of Sky kinase resulted in the identification of highly selective compounds with properties suitable for use as in vitro and in vivo tools to probe the effects of Sky inhibition.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Animals , Humans , Mice , Receptor Protein-Tyrosine Kinases/chemistry , Structure-Activity Relationship , Substrate Specificity
8.
Bioorg Med Chem Lett ; 23(3): 693-8, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23265875

ABSTRACT

Interest in therapeutic kinase inhibitors continues to grow beyond success in oncology. To date, ATP-mimetic kinase inhibitors have focused primarily on monocyclic and bicyclic heterocyclic cores. We sought to expand on the repertoire of potential cores for kinase inhibition by exploring tricyclic variants of classical bicyclic hinge binding motifs such as pyrrolopyridine and pyrrolopyrazine. Herein we describe the syntheses of eight alternative tricyclic cores as well as in vitro screening results for representative kinases of potential therapeutic interest.


Subject(s)
Drug Design , Protein Kinase Inhibitors , Cells, Cultured , Cyclization , Enzyme Activation/drug effects , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology
9.
Bioorg Med Chem Lett ; 22(1): 190-3, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22119469

ABSTRACT

We report the discovery of a novel series of spiroindoline-based inhibitors of Sky kinase that bind in the ATP-binding site and exhibit high levels of kinome selectivity through filling the Ala571-subpocket. These inhibitors exhibit moderate oral bioavailability in the rat due to low absorption across the gut wall.


Subject(s)
Chemistry, Pharmaceutical/methods , Intestines/drug effects , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Absorption , Adenosine Triphosphate/chemistry , Administration, Oral , Animals , Binding Sites , Biological Availability , Crystallography, X-Ray/methods , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Platelet Aggregation , Rats , Receptor Protein-Tyrosine Kinases/chemistry
10.
J Med Chem ; 54(12): 4219-33, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21557540

ABSTRACT

Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/chemical synthesis , Antihypertensive Agents/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Imidazoles/chemical synthesis , PPAR gamma/agonists , Pyridines/chemical synthesis , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/chemistry , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Biological Availability , Blood Glucose/analysis , Crystallography, X-Ray , Drug Partial Agonism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Insulin Resistance , Male , Models, Molecular , Pyridines/chemistry , Pyridines/pharmacology , Radioligand Assay , Rats , Rats, Inbred SHR , Stereoisomerism , Structure-Activity Relationship , Transcriptional Activation , Triglycerides/blood
12.
Bioorg Med Chem ; 17(6): 2501-11, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19231206

ABSTRACT

Aiming to improve upon previously disclosed Factor Xa inhibitors, a series of 4,4-disubstituted pyrrolidine-1,2-dicarboxamides were explored with the intent of increasing the projected human half-life versus 5 (projected human t(1/2)=6 h). A stereospecific route to compounds containing a 4-aryl-4-hydroxypyrrolidine scaffold was developed, resulting in several compounds that demonstrated an increase in the half-life as well as an increase in the in vitro potency compared to 5. Reported herein is the discovery of 26, containing a (2R,4S)-4-hydroxy-4-(2,4-difluorophenyl)-pyrrolidine scaffold, which is a selective, orally bioavailable, efficacious Factor Xa inhibitor that appears suitable for a once-daily dosing (projected human t(1/2)=23 h).


Subject(s)
Pyrrolidines/pharmacology , Administration, Oral , Crystallography, X-Ray , Half-Life , Humans , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacokinetics
13.
Chem Res Toxicol ; 21(5): 1095-106, 2008 May.
Article in English | MEDLINE | ID: mdl-18393453

ABSTRACT

Compound I (4,5-dihydropyrazole-1,5-dicarboxylic acid-1-[(4-chlorophenyl)-amide] 5-[(2-oxo-2 H-[1,3']bipyridinyl-6'-yl)-amide] was found to undergo metabolic activation in rat liver microsomes in the presence of NADPH. A reactive intermediate, postulated to be p-chlorophenyl isocyanate (CPIC), was trapped by GSH in vitro and characterized by liquid chromatography tandem mass spectrometry (LC/MS/MS). Subsequently, the structure of the GSH conjugate was confirmed by a comparison with a synthetic standard. The GSH conjugate was also found in the bile of rats that received an oral dose (10 mg/kg) of compound I. Further analyses of rat bile and urine using online electrochemical derivatization coupled to LC/MS demonstrated the presence of p-chlorophenyl aniline (CPA), a hydrolytic product of the intermediate isocyanate. This provided further evidence for the potential existence of CPIC. Approximately 7% of the dose was accounted by the products of CPIC, which included the GSH conjugate and CPA excreted in bile and urine. Multiple rat cytochrome P450 enzymes, including P450 1A, P450 2C, and P450 3A, appeared to be responsible for the activation of compound I to CPIC. The activation kinetics of compound I to CPIC in male rat liver microsomes exhibited a biphasic profile, indicative of at least two contributing P450 enzymes. One enzyme showed a small value of K m at 42 microM and a low V max of 66 pmol min (-1) mg (-1), while the other exhibited a large value of K m at 148 microM and a high V max of 1200 pmol min (-1) mg (-1). The formation of a putative CPIC intermediate, a carbamoylating species known to be capable of covalent binding to macromolecules, suggests a potential liability associated with the compound, particularly the dihydropyrazole-1-carboxylic acid-(4-chlorophenyl amide) scaffold, which appears to be responsible for the generation of CPIC. The mechanism of bioactivation to the putative CPIC is postulated to involve an initial P450-mediated hydroxylation of the pyrazoline at the 3 position followed by subsequent decomposition to CPIC. This mechanistic insight into the bioactivation allowed for the development of a rational structural modification strategy to mitigate or minimize the reactive metabolite formation. One of the approaches included the introduction of a metabolically stable substituent with electron-donating character at the 3 position of pyrazoline to block CPIC formation.


Subject(s)
Chlorobenzenes/pharmacology , Isocyanates/pharmacology , Microsomes, Liver/drug effects , Pyrazoles/pharmacology , Animals , Chlorobenzenes/chemistry , Cytochrome P-450 Enzyme System/metabolism , Enzyme Activation , Glutathione/metabolism , Humans , Kinetics , Male , Mass Spectrometry , Microsomes, Liver/metabolism , Molecular Structure , Pyrazoles/chemistry , Rats
14.
Chem Biol Drug Des ; 70(2): 100-12, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17683371

ABSTRACT

Herein, we report the discovery of novel, proline-based factor Xa inhibitors containing a neutral P1 chlorophenyl pharmacophore. Through the additional incorporation of 1-(4-amino-3-fluoro-phenyl)-1H-pyridin-2-one 22, as a P4 pharmacophore, we discovered compound 7 (PD 0348292). This compound is a selective, orally bioavailable, efficacious FXa inhibitor that is currently in phase II clinical trials for the treatment and prevention of thrombotic disorders.


Subject(s)
Antithrombin III/chemical synthesis , Antithrombin III/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Animals , Anticoagulants/chemical synthesis , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Antithrombin III/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Male , Pyridones/pharmacokinetics , Pyrrolidines/pharmacokinetics , Rabbits , Rats , Structure-Activity Relationship
15.
Bioorg Med Chem ; 15(17): 5912-49, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17574423

ABSTRACT

We report the design and synthesis of a series of 6-(2,4-diaminopyrimidinyl)-1,4-benzoxazin-3-ones as orally bioavailable small molecule inhibitors of renin. Compounds with a 2-methyl-2-aryl substitution pattern exhibit potent renin inhibition and good permeability, solubility, and metabolic stability. Oral bioavailability was found to be dependent on metabolic clearance and cellular permeability, and was optimized through modulation of the sidechain that binds in the S3(sp) subsite.


Subject(s)
Benzoxazines/chemistry , Benzoxazines/pharmacology , Drug Design , Pyridines/chemistry , Renin/antagonists & inhibitors , Amination , Animals , Benzoxazines/chemical synthesis , Benzoxazines/metabolism , Crystallography, X-Ray , Male , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Renin/chemistry , Renin/metabolism , Structure-Activity Relationship
16.
Chem Biol Drug Des ; 69(6): 444-50, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17581239

ABSTRACT

A novel series of pyrrolidine-1,2-dicarboxamides was discovered as factor Xa inhibitors using structure-based drug design. This series consisted of a neutral 4-chlorophenylurea P1, a biphenylsulfonamide P4 and a D-proline scaffold (1, IC(50) = 18 nM). Optimization of the initial hit resulted in an orally bioavailable, subnanomolar inhibitor of factor Xa (13, IC(50) = 0.38 nM), which was shown to be efficacious in a canine electrolytic model of thrombosis with minimal bleeding.


Subject(s)
Antithrombin III/chemistry , Chemistry, Pharmaceutical/methods , Pyrrolidonecarboxylic Acid/pharmacology , Administration, Oral , Animals , Antithrombin III/pharmacology , Crystallization , Dogs , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Protein Binding , Pyrrolidonecarboxylic Acid/chemistry , Structure-Activity Relationship , Time Factors
17.
Bioorg Med Chem Lett ; 17(13): 3575-80, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17482464

ABSTRACT

Novel 2,4-diaminopyrimidine-based small molecule renin inhibitors are disclosed. Through high throughput screening, parallel synthesis, X-ray crystallography, and structure based drug design, we have developed the first non-chiral, non-peptidic, small molecular template to possess moderate potency against renin. The designed compounds consist of a novel 6-ethyl-5-(1,2,3,4-tetrahydroquinolin-7-yl)pyrimidine-2,4-diamine ring system that exhibit moderate potency (IC(50): 91-650 nM) against renin while remaining 'Rule-of-five' compliant.


Subject(s)
Chemistry, Pharmaceutical/methods , Pyrimidines/chemistry , Renin/antagonists & inhibitors , Animals , Crystallography, X-Ray , Drug Design , Inhibitory Concentration 50 , Models, Chemical , Models, Molecular , Molecular Conformation , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Bioorg Med Chem ; 14(13): 4379-92, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16529937

ABSTRACT

Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.


Subject(s)
Factor Xa Inhibitors , Factor Xa/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Serine Proteinase Inhibitors/chemistry , Crystallography, X-Ray , Humans , Molecular Structure , Protein Conformation
19.
Bioorg Med Chem Lett ; 16(9): 2500-4, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16480874

ABSTRACT

A systematic investigation of the S3 sub-pocket activity requirements was conducted. It was observed that linear and sterically small side chain substituents are preferred in the S3 sub-pocket for optimal renin inhibition. Polar groups in the S3-sub-pocket were not well tolerated and caused a reduction in renin inhibitory activity. Further, compounds with clog P's < or = 3 demonstrated a dramatic reduction in CYP3A4 inhibitory activity.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Renin/antagonists & inhibitors , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/drug effects , Enzyme Inhibitors/chemical synthesis , Humans , Models, Molecular , Molecular Structure , Piperazines/chemical synthesis , Stereoisomerism , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 16(4): 1060-4, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16289811

ABSTRACT

The activated factor VII/tissue factor complex (FVIIa/TF) is known to play a key role in the formation of blood clots. Inhibition of this complex may lead to new antithrombotic drugs. A fluoropyridine-based series of FVIIa/TF inhibitors was discovered which utilized a diisopropylamino group for binding in the S2 and S3 binding pockets of the active site of the enzyme complex. In this series, an enhancement in binding affinity was observed by substitution at the 5-position of the hydroxybenzoic acid sidechain. An X-ray crystal structure indicates that amides at this position may increase inhibitor binding affinity through interactions with the S1'/S2' pocket.


Subject(s)
Enzyme Inhibitors/pharmacology , Factor VIIa/antagonists & inhibitors , Pyridines/pharmacology , Thromboplastin/antagonists & inhibitors , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...