Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38699869

ABSTRACT

Understanding how tropical corals respond to temperatures is important to evaluating their capacity to persist in a warmer future. We studied the common Pacific coral Pocillopora over 44° of latitude, and used populations at three islands with different thermal regimes to compare their responses to temperature using thermal performance curves (TPCs) for respiration and gross photosynthesis. Corals were sampled in the local autumn from Moorea, Guam and Okinawa, where mean±s.d. annual seawater temperature is 28.0±0.9°C, 28.9±0.7°C and 25.1±3.4°C, respectively. TPCs for respiration were similar among latitudes, the thermal optimum (Topt) was above the local maximum temperature at all three islands, and maximum respiration was lowest at Okinawa. TPCs for gross photosynthesis were wider, implying greater thermal eurytopy, with a higher Topt in Moorea versus Guam and Okinawa. Topt was above the maximum temperature in Moorea, but was similar to daily temperatures over 13% of the year in Okinawa and 53% of the year in Guam. There was greater annual variation in daily temperatures in Okinawa than Guam or Moorea, which translated to large variation in the supply of metabolic energy and photosynthetically fixed carbon at higher latitudes. Despite these trends, the differences in TPCs for Pocillopora spp. were not profoundly different across latitudes, reducing the likelihood that populations of these corals could better match their phenotypes to future more extreme temperatures through migration. Any such response would place a premium on high metabolic plasticity and tolerance of large seasonal variations in energy budgets.


Subject(s)
Anthozoa , Photosynthesis , Temperature , Animals , Anthozoa/physiology , Photosynthesis/physiology , Seasons , Seawater/chemistry
2.
Sci Rep ; 13(1): 2314, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759628

ABSTRACT

Many aspects of global ecosystem degradation are well known, but the ecological implications of variation in these effects over scales of kilometers and years have not been widely considered. On tropical coral reefs, kilometer-scale variation in environmental conditions promotes a spatial mosaic of coral communities in which spatial insurance effects could enhance community stability. To evaluate whether these effects are important on coral reefs, we explored variation over 2006-2019 in coral community structure and environmental conditions in Moorea, French Polynesia. We studied coral community structure at a single site with fringing, back reef, and fore reef habitats, and used this system to explore associations among community asynchrony, asynchrony of environmental conditions, and community stability. Coral community structure varied asynchronously among habitats, and variation among habitats in the daily range in seawater temperature suggested it could be a factor contributing to the variation in coral community structure. Wave forced seawater flow connected the habitats and facilitated larval exchange among them, but this effect differed in strength among years, and accentuated periodic connectivity among habitats at 1-7 year intervals. At this site, connected habitats harboring taxonomically similar coral assemblages and exhibiting asynchronous population dynamics can provide insurance against extirpation, and may promote community stability. If these effects apply at larger spatial scale, then among-habitat community asynchrony is likely to play an important role in determining reef-wide coral community resilience.


Subject(s)
Anthozoa , Animals , Ecosystem , Coral Reefs , Seawater/chemistry , Larva
3.
Sci Rep ; 12(1): 7106, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501329

ABSTRACT

Declines in abundance of scleractinian corals on shallow Caribbean reefs have left many reefs dominated by forests of arborescent octocorals. The ecological mechanisms favoring their persistence require exploration. We quantified octocoral communities from 2014 to 2019 at two sites in St. John, US Virgin Islands, and evaluated their dynamics to assess whether portfolio effects might contribute to their resilience. Octocorals were identified to species, or species complexes, and their abundances and heights were measured, with height2 serving as a biomass proxy. Annual variation in abundance was asynchronous among species, except when they responded in similar ways to hurricanes in September 2017. Multivariate changes in octocoral communities, viewed in 2-dimensional ordinations, were similar between sites, but analyses based on density differed from those based on the biomass proxy. On the density scale, variation in the community composed of all octocoral species was indistinguishable from that quantified with subsets of 6-10 of the octocoral species at one of the two sites, identifying structural redundancy in the response of the community. Conservation of the relative colony size-frequency structure, combined with temporal changes in the species represented by the tallest colonies, suggests that portfolio effects and functional redundancy stabilize the vertical structure and canopy in these tropical octocoral forests.


Subject(s)
Anthozoa , Cyclonic Storms , Animals , Anthozoa/physiology , Biomass , Caribbean Region , Forests
4.
Sci Rep ; 10(1): 4286, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152448

ABSTRACT

After centuries of human-mediated disturbances, Caribbean reef communities are vastly different from those described in the 1950s. Many are functionally dominated by macroalgae, but this community state represents only one of several possibilities into which present-day coral reefs can transition. Octocorals have always been abundant on Caribbean reefs, but increases in their abundance over the last few decades suggest that arborescent octocorals have the potential to expand their populations on reefs that hitherto had been dominated by scleractinians. Here we show that octocoral-dominated communities at three sites on the fringing reefs of St. John, US Virgin Islands, were resilient to the effects of two Category 5 hurricanes in 2017. We describe the dynamics of octocoral communities over five years at three sites on shallow reefs (~9-m depth), and test for the effects of Hurricanes Irma and Maria. The hurricanes depressed the densities of juvenile and adult octocoral colonies as much as 47%. However, there were only weak effects on species richness and the relative abundances of the octocoral species. The hurricanes did not alter patterns of spatial variability in octocoral community structure that existed among sites prior to the storms. The density of octocoral recruits (individuals ≤ 5 cm high) was reduced in the year following the hurricanes, mainly due to a decline in abundance of recruits <0.5 cm, but returned to pre-storm densities in 2019. Persistently high octocoral recruitment provides a mechanism supporting ecological resilience of these communities. Continuing environmental degradation is a threat to all tropical marine communities, but the reefs of St. John illustrate how "octocoral forests" can persist as the structurally dominant community on Caribbean reefs.


Subject(s)
Anthozoa/growth & development , Biodiversity , Coral Reefs , Cyclonic Storms , Environmental Monitoring , Population Dynamics , Animals , Caribbean Region , Forests
5.
Proc Biol Sci ; 284(1847)2017 01 25.
Article in English | MEDLINE | ID: mdl-28100813

ABSTRACT

Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pHCF) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pHCF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (AT). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pHCF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [AT], revealing that seawater pH is not the sole driver of pHCF Notably, when we synthesize our results with published data, we identify linear relationships of pHCF with the seawater [DIC]/[H+] ratio, [AT]/ [H+] ratio and [[Formula: see text]]. Our findings contribute new insights into the mechanisms determining the sensitivity of coral calcification to changes in seawater carbonate chemistry, which are needed for predicting effects of environmental change on coral reefs and for robust interpretations of isotopic palaeoenvironmental records in coral skeletons.


Subject(s)
Anthozoa/physiology , Calcification, Physiologic , Carbonates/chemistry , Seawater/chemistry , Animals , Coral Reefs , Hydrogen-Ion Concentration
6.
Sci Rep ; 4: 6681, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25327767

ABSTRACT

By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 µatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.


Subject(s)
Acids/metabolism , Anthozoa/physiology , Coral Reefs , Acids/chemistry , Animals , Anthozoa/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Seawater/chemistry
7.
Proc Biol Sci ; 281(1790)2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25056628

ABSTRACT

Ocean acidification (OA) and its associated decline in calcium carbonate saturation states is one of the major threats that tropical coral reefs face this century. Previous studies of the effect of OA on coral reef calcifiers have described a wide variety of outcomes for studies using comparable partial pressure of CO2 (pCO2) ranges, suggesting that key questions remain unresolved. One unresolved hypothesis posits that heterogeneity in the response of reef calcifiers to high pCO2 is a result of regional-scale variation in the responses to OA. To test this hypothesis, we incubated two coral taxa (Pocillopora damicornis and massive Porites) and two calcified algae (Porolithon onkodes and Halimeda macroloba) under 400, 700 and 1000 µatm pCO2 levels in experiments in Moorea (French Polynesia), Hawaii (USA) and Okinawa (Japan), where environmental conditions differ. Both corals and H. macroloba were insensitive to OA at all three locations, while the effects of OA on P. onkodes were location-specific. In Moorea and Hawaii, calcification of P. onkodes was depressed by high pCO2, but for specimens in Okinawa, there was no effect of OA. Using a study of large geographical scale, we show that resistance to OA of some reef species is a constitutive character expressed across the Pacific.


Subject(s)
Anthozoa/physiology , Calcium Carbonate/chemistry , Coral Reefs , Rhodophyta/physiology , Seawater/chemistry , Animals , Calcification, Physiologic , Calcium Carbonate/metabolism , Carbon Dioxide/chemistry , Hydrogen-Ion Concentration , Oceans and Seas , Pacific Ocean
9.
Proc Biol Sci ; 280(1753): 20122374, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23256193

ABSTRACT

Central to evaluating the effects of ocean acidification (OA) on coral reefs is understanding how calcification is affected by the dissolution of CO(2) in sea water, which causes declines in carbonate ion concentration [CO(3)(2-)] and increases in bicarbonate ion concentration [HCO(3)(-)]. To address this topic, we manipulated [CO(3)(2-)] and [HCO(3)(-)] to test the effects on calcification of the coral Porites rus and the alga Hydrolithon onkodes, measured from the start to the end of a 15-day incubation, as well as in the day and night. [CO(3)(2-)] played a significant role in light and dark calcification of P. rus, whereas [HCO(3)(-)] mainly affected calcification in the light. Both [CO(3)(2-)] and [HCO(3)(-)] had a significant effect on the calcification of H. onkodes, but the strongest relationship was found with [CO(3)(2-)]. Our results show that the negative effect of declining [CO(3)(2-)] on the calcification of corals and algae can be partly mitigated by the use of HCO(3)(-) for calcification and perhaps photosynthesis. These results add empirical support to two conceptual models that can form a template for further research to account for the calcification response of corals and crustose coralline algae to OA.


Subject(s)
Anthozoa/physiology , Carbonates/chemistry , Rhodophyta/physiology , Seawater/chemistry , Acids/chemistry , Animals , Bicarbonates/chemistry , Bicarbonates/metabolism , Calcification, Physiologic , Carbonates/metabolism , Coral Reefs , Hydrogen-Ion Concentration , Oceans and Seas , Polynesia , Sunlight
10.
J Exp Mar Biol Ecol ; 261(2): 159-172, 2001 Jul 01.
Article in English | MEDLINE | ID: mdl-11399272

ABSTRACT

After several decades of disturbance, many coral reefs in the Caribbean are dominated by macroalgae. One process affecting this transition is coral-macroalgal competition, yet few studies have addressed the mechanisms involved. In this study, we investigated competition between the tall and bushy macroalga Sargassum hystrix (J. Agardh) and the branching coral Porites porites (Pallas) on a shallow reef in Jamaica. Experiments were designed to expose coral branches to different treatments to test the role of shading and abrasion by Sargassum on coral growth and polyp expansion. Corals exposed to Sargassum grew significantly more slowly (80% reduction) than controls, but this effect was absent when corals were caged to prevent physical contact with macroalgae. Light levels were reduced in both the algal and cage treatments, but shading apparently had little effect on the growth of corals in cages. Short-term measurements of integrated net water flow did not detect variation among treatments. In algal-mimic treatments, where clear plastic strips could touch but not shade the corals, growth rates were 25% lower than controls, but this effect was not statistically significant. Thus, the growth of corals in contact with Sargassum was reduced by abrasion and, to a lesser extent, by factors unique to living macroalgae. Analysis of polyp expansion showed that polyps were more frequently retracted when corals were in contact with macroalgae or algal-mimics compared to controls or cage treatment; the frequency of polyp contraction was correlated positively with growth. Together, these results suggest that abrasion-mediated polyp retraction is one of the primary mechanisms of competition utilized by tall (ca. 17 cm) macroalgae against scleractinian corals.

11.
Proc Natl Acad Sci U S A ; 98(9): 5067-71, 2001 Apr 24.
Article in English | MEDLINE | ID: mdl-11274358

ABSTRACT

The transition of many Caribbean reefs from coral to macroalgal dominance has been a prominent issue in coral reef ecology for more than 20 years. Alternative stable state theory predicts that these changes are reversible but, to date, there is little indication of this having occurred. Here we present evidence of the initiation of such a reversal in Jamaica, where shallow reefs at five sites along 8 km of coastline now are characterized by a sea urchin-grazed zone with a mean width of 60 m. In comparison to the seaward algal zone, macroalgae are rare in the urchin zone, where the density of Diadema antillarum is 10 times higher and the density of juvenile corals is up to 11 times higher. These densities are close to those recorded in the late 1970s and early 1980s and are in striking contrast to the decade-long recruitment failure for both Diadema and scleractinians. If these trends continue and expand spatially, reefs throughout the Caribbean may again become dominated by corals and algal turf.


Subject(s)
Cnidaria/physiology , Ecosystem , Eukaryota/physiology , Sea Urchins/physiology , Animals , Cnidaria/growth & development , Geography , Jamaica , Population Density , Seawater
12.
J Exp Mar Biol Ecol ; 256(2): 279-289, 2001 Jan 31.
Article in English | MEDLINE | ID: mdl-11164869

ABSTRACT

Mass transfer characteristics of scleractinian corals are affected by their skeletal morphology and the concentration gradients that develop as a consequence of the interactions of their morphology and biomass with the overlying seawater. These interactions can have a profound effect on coral metabolism. In this study, boundary layer characteristics were compared between different size colonies of the corals Dichocoenia stokesii and Stephanocoenia michilini to determine the relative roles of colony size and corallite structures (i.e. surface roughness) in mass transfer. Colonies of both species were rounded in shape, but differed in small-scale roughness as measured by the elevation of corallites. Additionally, D. stokesii had a greater aspect ratio than S. michilini, and their colonies were slightly taller for a given diameter. Boundary layers were characterized by placing dead coral skeletons in a flow tank and estimating shear velocities (u(*)) at different flow speeds. The effects of flow speed, size, and roughness on shear velocities were estimated for two juvenile size classes (10-20 and 30-40 mm diameter) of each species that were exposed to unidirectional flow regimes (4 and 17 cm s(-1)). Shear velocities were significantly greater in high, compared to low flow, and there was a significant interaction between colony size and surface roughness; the interaction was caused by a difference in magnitude, rather than direction, of the effect of roughness and size on u(*). Thus, there was a greater degree of turbulence at high flow compared to low flow, regardless of roughness or size, and the greatest turbulence occurred over large colonies of D. stokesii at high flow. Together, these results suggest that boundary layers around small corals are heavily influenced by upstream roughness elements, and more strongly affected by flow regimes than skeletal features. The relationship between colony morphology (i.e. aspect ratio and, possibly, surface roughness) and boundary layer characteristics may be non-linear in small corals.

13.
Biol Bull ; 199(1): 21-8, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10975639

ABSTRACT

Although most physiological traits scale allometrically in unitary organisms, it has been hypothesized that modularity allows for isometric scaling in colonial modular taxa. Isometry would allow increases in size without functional constraints, and is thought to be of central importance to the success of a modular design. Yet, despite its potential importance, scaling in these organisms has received little attention. To determine whether scleractinian corals are free of allometric constraints, we quantified metabolic scaling, measured as aerobic respiration, in small colonies (< or =40 mm in diam.) of the scleractinian Siderastrea siderea. We also quantified the scaling of colony surface area with biomass, since the proposed isometry is contingent upon maintaining a constant ratio of surface area to biomass (or volume) with size. Contrary to the predicted isometry, aerobic respiration scaled allometrically on biomass with a slope (b) of 0.176, and colony surface area scaled allometrically on biomass with a slope of 0.730. These findings indicate that small colonies of S. siderea have disproportionately high metabolic rates and SA:B ratios compared to their larger counterparts. The most probable explanations for the allometric scaling of aerobic respiration are (1) a decline in the SA:B ratio with size such that more surface area is available per unit of biomass for mass transfer in the smallest colonies, and (2) the small size, young age, and disproportionately high growth rates of the corals examined. This allometric scaling also demonstrates that modularity, alone, does not allow small colonies of S. siderea to overcome allometric constraints. Further studies are required to determine whether allometric scaling is characteristic of the full size range of colonies of S. siderea.


Subject(s)
Cnidaria/physiology , Animals , Cnidaria/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...