Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microb Pathog ; 171: 105724, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988883

ABSTRACT

Oral microbes coexist with each other in a symbiotic relationship or as commensals in healthy body. Teeth and oral cavity harbor diverse community of fungi and bacteria. This study focused on bacterial and fungal component of gingiva, where the last occupy little attention. In addition to study the antimicrobial activity of toothpastes, mouth washes and natural oils against microorganisms. Sixty swabs from outer surfaces of gingiva in healthy persons, as well as patients complaining of gingivitis and periodontitis were collected for fungal and bacterial analyses. Sensitivity of the isolated microorganisms to some pharmaceutical preparations and natural oils was also performed. Ten fungal and 9 bacterial species were identified. There is a highly significant variation in the frequency of Klebsiella pneumonia among healthy, gingivitis and periodontitis. Also, Candida tropicalis and cocci bacteria showed significant diversity among the three tested groups. Among pharmaceutical preparations (toothpastes and mouth washes) and natural oils, Paradontax, Hexitol and clove oil showed the best antimicrobial activity against tested fungal and bacterial strains. Although, minimum inhibition concentrations (MICs) of clove oil were high compared to Paradontax and Hexitol, nevertheless, it is highly recommended as both antifungal and antibacterial agent against oral pathogenic microorganisms, because it is a natural compound and nearly devoid of side effects.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria , Clove Oil/pharmacology , Gingiva/microbiology , Gingivitis/microbiology , Humans , Periodontitis/microbiology , Pharmaceutical Preparations , Plant Oils , Sugar Alcohols , Toothpastes
2.
J Int Soc Prev Community Dent ; 12(1): 109-116, 2022.
Article in English | MEDLINE | ID: mdl-35281684

ABSTRACT

Objective: This study aimed at determining the influence of adding silicon dioxide nanoparticles (nano-SiO2) to soft relining materials on C. albicans adhesion, surface roughness, and contact angle. Materials and Methods: Eighty heat-polymerized acrylic resin disks were constructed and relined by using auto-polymerized acrylic soft liners (COE-SOFT, GC Co., Tokyo, Japan). The specimens were categorized into two groups according to the tests conducted. Group A was composed of 40 specimens for evaluating antifungal activity, and Group B was composed of 40 specimens for testing surface roughness and contact angle. Each group was subcategorized into four subgroups (n = 10) according to the concentration of nano-SiO2 added to the soft-liner powder: control, 0.25%, 0.5%, and 1.0% by weight. The colony forming unit (CFU) was used to assess C. albicans count. A profilometer was used to measure the surface roughness values (Ra; µm). The sessile drop method was used to evaluate the contact angle (o) by using a goniometer. Analysis of variance and Tukey's post hoc tests (α = 0.05) were used for the data analysis. Results: In comparison with the unmodified group, the 0.25% and the 0.5% nano-SiO2 groups exhibited significantly lower C. albicans counts (P < 0.001), surface roughness (P < 0.001), and contact angles (P < 0.001). The exception was the 1% group, which exhibited higher C. albicans count, surface roughness, and contact angles than lower-concentration nano-SiO2 groups; however, these values in the 1% group were still less than their respective values in the control group. Conclusion: The addition of 0.25% and 0.5% nano-SiO2 to an auto-polymerized acrylic soft liner decreased C. albicans adhesion, surface roughness, and contact angle.

SELECTION OF CITATIONS
SEARCH DETAIL
...