Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1282273, 2023.
Article in English | MEDLINE | ID: mdl-38116205

ABSTRACT

Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.

2.
Front Cell Dev Biol ; 10: 857230, 2022.
Article in English | MEDLINE | ID: mdl-35531100

ABSTRACT

Retinoic acid (RA) is a central regulatory signal that controls numerous developmental processes in vertebrate embryos. Although activation of Hox expression is considered one of the earliest functions of RA signaling in the embryo, there is evidence that embryos are poised to initiate RA signaling just before gastrulation begins, and manipulations of the RA pathway have been reported to show gastrulation defects. However, which aspects of gastrulation are affected have not been explored in detail. We previously showed that partial inhibition of RA biosynthesis causes a delay in the rostral migration of some of the earliest involuting cells, the leading edge mesendoderm (LEM) and the prechordal mesoderm (PCM). Here we identify several detrimental gastrulation defects resulting from inhibiting RA biosynthesis by three different treatments. RA reduction causes a delay in the progression through gastrulation as well as the rostral migration of the goosecoid-positive PCM cells. RA inhibition also hampered the elongation of explanted dorsal marginal zones, the compaction of the blastocoel, and the length of Brachet's cleft, all of which indicate an effect on LEM/PCM migration. The cellular mechanisms underlying this deficit were shown to include a reduced deposition of fibronectin along Brachet's cleft, the substrate for their migration, as well as impaired separation of the blastocoel roof and involuting mesoderm, which is important for the formation of Brachet's cleft and successful LEM/PCM migration. We further show reduced non-canonical Wnt signaling activity and altered expression of genes in the Ephrin and PDGF signaling pathways, both of which are required for the rostral migration of the LEM/PCM, following RA reduction. Together, these experiments demonstrate that RA signaling performs a very early function critical for the progression of gastrulation morphogenetic movements.

3.
Dev Biol ; 462(2): 165-179, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32259520

ABSTRACT

Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 â€‹mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.


Subject(s)
Body Patterning/physiology , Gene Expression Regulation, Developmental/genetics , Morphogenesis/physiology , Animals , Bone Morphogenetic Proteins/metabolism , Cell Size , Embryo, Nonmammalian/metabolism , Embryonic Development/physiology , Gastrula/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/physiology , Mesoderm/metabolism , Morphogenesis/genetics , Signal Transduction/physiology , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...