Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
PLoS One ; 17(9): e0274204, 2022.
Article in English | MEDLINE | ID: mdl-36074780

ABSTRACT

The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (ß-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.


Subject(s)
Bacillus thuringiensis , Coleoptera , Insecticides , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Brevibacillus , Coleoptera/genetics , Endotoxins/metabolism , Insecticides/pharmacology , Larva/metabolism , Mice , Pest Control, Biological/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/genetics , Zea mays/metabolism
2.
PLoS One ; 17(8): e0272311, 2022.
Article in English | MEDLINE | ID: mdl-35921368

ABSTRACT

Western corn rootworm (WCR), Diabrotica virgifera virgifera, LeConte, is an insect pest that poses a significant threat to the productivity of modern agriculture, causing significant economic and crop losses. The development of genetically modified (GM) crops expressing one or more proteins that confer tolerance to specific insect pests, such as WCR, was a historic breakthrough in agricultural biotechnology and continues to serve as an invaluable tool in pest management. Despite this, evolving resistance to existing insect control proteins expressed in current generation GM crops requires continued identification of new proteins with distinct modes of action while retaining targeted insecticidal efficacy. GM crops expressing insecticidal proteins must undergo extensive safety assessments prior to commercialization to ensure that they pose no increased risk to the health of humans or other animals relative to their non-GM conventional counterparts. As part of these safety evaluations, a weight of evidence approach is utilized to assess the safety of the expressed insecticidal proteins to evaluate any potential risk in the context of dietary exposure. This study describes the food and feed safety assessment of Vpb4Da2, a new Bacillus thuringiensis insecticidal protein that confers in planta tolerance to WCR. Vpb4Da2 exhibits structural and functional similarities to other insect control proteins expressed in commercialized GM crops. In addition, the lack of homology to known toxins or allergens, a lack of acute toxicity in mice, inactivation by conditions commonly experienced in the human gut or during cooking/food processing, and the extremely low expected dietary exposure to Vpb4Da2 provide a substantial weight of evidence to demonstrate that the Vpb4Da2 protein poses no indication of a risk to the health of humans or other animals.


Subject(s)
Bacillus thuringiensis , Coleoptera , Insecticides , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Crops, Agricultural/metabolism , Endotoxins/metabolism , Humans , Insecticide Resistance , Insecticides/pharmacology , Larva , Mice , Pest Control, Biological , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/genetics , Zea mays/metabolism
3.
Microorganisms ; 10(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056570

ABSTRACT

Salmonella spp., contained within the peripheral lymph nodes (PLNs) of cattle, represents a significant source of contamination of ground beef. Herein is the first report where species-specific kinome peptide arrays designed for bovine biology were used to further the understanding of Salmonella spp. within these PLNs. For the purpose of this research, multiple comparisons of sub-iliac lymph nodes were made to include nodes from feedlot cattle that were infected with Salmonella spp. to those that were non-infected; seasonal differences in feedlot cattle harvested in either August or January; cull dairy cows compared to feedlot cattle; and PLNs from cattle experimentally inoculated with Salmonella spp. versus naturally infected animals. The first comparison of Salmonella-positive and -negative PLNs found that considering the kinotypes for these animals, the major distinguishing difference was not the presence or absence of Salmonella spp. in the PLNs but the concentration. Further, the majority of pathways activated were directly related to immune responses including innate immunity, thus Salmonella spp. within the PLNs activates the immune system in that node. Results from the comparison of feedlot cattle and cull dairy cows suggests that a Salmonella spp.-negative animal, regardless of type, has a more consistent kinome profile than that of a Salmonella spp.-positive animal and that the differences between feedlot and cull dairy cattle are only pronounced when the PLNs are Salmonella spp. positive. PLNs collected in the winter showed a much more consistent kinome profile, regardless of Salmonella status, suggesting that in the winter these cattle are similar, and this is not affected by the presence of Salmonella spp., whereas significant variability among kinotypes was observed for PLNs collected in the summer. The most distinct clustering of kinotypes observed in this study was related to how the animal was infected with Salmonella spp. There were significant differences in the phosphorylation state of the immune response peptides between experimentally and naturally infected animals, suggesting that the immune system is activated in a significantly different manner when comparing these routes of infection. Increasing our understanding of Salmonella spp. within cattle, and specifically within the PLNs, will ultimately help design effective pre-harvest intervention strategies as well as appropriate experimentation to validate those technologies.

4.
Ther Adv Vaccines Immunother ; 8: 2515135520957760, 2020.
Article in English | MEDLINE | ID: mdl-33089062

ABSTRACT

BACKGROUND: Salmonella is a common inhabitant of the ruminant gastrointestinal tract, where it often resides asymptomatically and may be shed into the feces. More recently it was discovered that Salmonella may be contained within the peripheral, non-mesenteric lymph nodes, where it is impervious to in-plant pathogen control interventions and may serve as a source of Salmonella-contamination of ground beef. Over the past 10 years considerable research effort has been expended at understanding how this pathogen gets to these lymph nodes, the duration of infection, and, most importantly, screening and developing potential intervention strategies that may be employed on farm prior to the animal being presented for slaughter. METHODS: Utilizing an experimental model of Salmonella inoculation of bovine peripheral lymph nodes (PLNs), two pilot vaccine experiments were conducted to evaluate two Salmonella vaccines: Salmonella Newport Bacterial Extract (Experiment I) and Endovac-Bovi® (Experiment II) on preventing Salmonella acquisition by these nodes. In Experiment I, 4 months following the booster vaccination, 30 steers were inoculated with three Salmonella serotypes intradermally: Newport, Montevideo, and Anatum administered to the right legs, left legs, and to the caudal thorax and abdomen, respectively. Cattle were inoculated every other day over the course of five days (three total inoculation events) and 6 and 12 days following the final Salmonella inoculation, 16 and 14 head in each treatment were euthanized, respectively. In Experiment II, 12 head of Holstein steers were utilized. Seven days following the booster and weekly thereafter for 3 weeks (four total inoculation events), cattle were inoculated as above and euthanized 7 days following final inoculation. Right and left sub-iliac, popliteal and pre-scapular lymph nodes were collected in each experiment, weighed and cultured for Salmonella. RESULTS: In Experiment I, no treatment differences were observed in Salmonella prevalence 6 days post-inoculation (necropsy 1). However, in vaccinated cattle at the second necropsy, a reduction (p = 0.05) in Salmonella prevalence was observed in the sub-iliac and pre-scapular lymph nodes as well as when all nodes were evaluated collectively (p = 0.04). In Experiment II, the vaccine reduced (p = 0.03) Salmonella prevalence in the right popliteal and tended (p = 0.09) to decrease prevalence in both popliteal lymph nodes. CONCLUSION: Under these experimental conditions, the data generated provide evidence of a partial vaccine effect on Salmonella within PLNs and indicate that further research may be warranted.

5.
PLoS One ; 15(6): e0233745, 2020.
Article in English | MEDLINE | ID: mdl-32542029

ABSTRACT

The susceptibility of newly expressed proteins to digestion by gastrointestinal proteases (e.g., pepsin) has long been regarded as one of the important endpoints in the weight-of-evidence (WOE) approach to assess the allergenic risk of genetically modified (GM) crops. The European Food Safety Authority (EFSA) has suggested that current digestion study protocols used for this assessment should be modified to more accurately reflect the diverse physiological conditions encountered in human populations and that the post-digestion analysis should include analytical methods to detect small peptide digestion products.The susceptibility of two allergens (beta-lactoglobin (ß-Lg) and alpha-lactalbumin (α-La)) and two non-allergens (hemoglobin (Hb) and phosphofructokinase (PFK)) to proteolytic degradation was investigated under two pepsin digestion conditions (optimal pepsin digestion condition: pH 1.2, 10 U pepsin/µg test protein; sub-optimal pepsin digestion condition: pH 5.0, 1 U pepsin/10 mg test protein), followed by 34.5 U trypsin/mg test protein and 0.4 U chymotrypsin/mg test protein digestion in the absence or presence of bile salts. All samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with Coomassie Blue staining and, in parallel, liquid chromatography tandem mass spectrometry (LC-MS) detection. The results provide following insights: 1) LC-MS methodology does provide the detection of small peptides; 2) Peptides are detected in both allergens and non-allergens from all digestion conditions; 3) No clear differences among the peptides detected from allergen and non-allergens; 4) The differences observed in SDS-PAGE between the optimal and sub-optimal pepsin digestion conditions are expected and align with kinetics and properties of the specific enzymes; 5) The new methodology with new digestion conditions and LC-MS detection does not provide any differentiating information for prediction whether a protein is an allergen. The classic pepsin resistance assay remains the most useful assessment of the potential exposure of an intact newly expressed protein as part of product safety assessment within a WOE approach.


Subject(s)
Allergens/chemistry , Food Analysis/methods , Peptides/chemistry , Proteolysis , Allergens/metabolism , Animals , Chromatography, Liquid/methods , Food Safety , Hemoglobins/chemistry , Hemoglobins/metabolism , Lactalbumin/chemistry , Lactalbumin/metabolism , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Peptides/metabolism , Phosphofructokinases/chemistry , Phosphofructokinases/metabolism , Swine , Tandem Mass Spectrometry/methods , Trypsin/metabolism
6.
Regul Toxicol Pharmacol ; 102: 98-107, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30562601

ABSTRACT

Assessing the safety of genetically engineered crops includes evaluating the risk (hazard and exposure) of consuming their newly expressed proteins. The dicamba monooxygenase (DMO) protein, introduced into soybeans to confer tolerance (DT) to dicamba herbicide, was previously characterized and identified to pose no food or feed safety hazards. Most agricultural commodities (e.g., soybeans, maize) enter the food supply after processing methods that can include exposure to high temperatures, harsh solvents or pH extremes that can adversely impact the structure and function of proteins. To understand the likelihood of exposure to DMO in foods from DT soy, enzymatically active and/or immunodetectable forms of DMO were measured in pilot-scale productions of two soy foods (soymilk and tofu), and eight processed fractions (full fat flour, inactivated full fat flour, defatted flour, toasted meal, protein isolate, protein concentrate, crude lecithin, and refined, bleached and deodorized oil). Western blot analysis detected DMO in tofu and in five of the eight processed fractions. DMO activity was not detected in either soymilk or tofu, nor in six of the eight processed fractions. Therefore, many commercial soy processing methods can denature and/or degrade introduced proteins, like DMO. Although the DMO protein has shown no evidence of hazard, this study demonstrates that processing further reduces any food or feed risk by limiting dietary exposure to intact DMO protein.


Subject(s)
Dicamba , Food Handling , Glycine max , Herbicides , Mixed Function Oxygenases , Plants, Genetically Modified/enzymology , Soy Foods/analysis , Dietary Exposure/prevention & control , Drug Resistance , Mixed Function Oxygenases/analysis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Glycine max/enzymology , Glycine max/genetics
7.
Regul Toxicol Pharmacol ; 99: 50-60, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30196079

ABSTRACT

The lepidopteran-active Cry1A.105 protein is a chimeric three-domain insecticidal toxin with distinct structural domains derived from the naturally occurring Cry1Ab, Cry1Ac and Cry1F proteins from the soil bacterium Bacillus thuringiensis (Bt). The X-ray crystal structure of the Cry1A.105 tryptic core at 3.0 Šresolution demonstrates its high structural similarity to the tryptic core of Cry1Ac. Bioinformatics analyses demonstrate that Cry1A.105 has no significant amino acid sequence similarity to known allergens or mammalian toxins, which is the same conclusion reached for its component domains. Like its intact donor proteins, Cry1A.105 was heat labile at temperatures ≥75 °C and degraded upon exposure to gastrointestinal proteases. No adverse effects were observed in mice when Cry1A.105 was dosed orally at 2451 mg/kg body weight. Therefore, the weight of evidence supports that Cry1A.105 is safe for human and animal consumption. These results support the conclusion that the safety of a chimeric protein for human or animal consumption can be evaluated in the context of the safety of its donor proteins.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/adverse effects , Amino Acid Sequence , Animals , Endotoxins/adverse effects , Female , Humans , Insecticides/adverse effects , Mice , Recombinant Fusion Proteins/adverse effects
8.
Clin Transl Allergy ; 8: 30, 2018.
Article in English | MEDLINE | ID: mdl-30116520

ABSTRACT

BACKGROUND: Susceptibility to pepsin digestion of candidate transgene products is regarded an important parameter in the weight-of-evidence approach for allergenicity risk assessment of genetically modified crops. It has been argued that protocols used for this assessment should better reflect physiological conditions encountered in representative food consumption scenarios. AIM: To evaluate whether inclusion of more physiological conditions, such as sub-optimal and lower pepsin concentrations, in combination with pancreatin digestion, improved the performance of digestibility protocols used in characterization of protein stability. METHODS: Four pairs of established allergens and their related non/weakly-allergenic counterparts (seed albumins, muscle tropomyosins, plant lipid transfer proteins [LTP] and collagens) plus fish parvalbumin, were subjected to nine combinations of pH (1.2-2.5-4.0) and pepsin-to-protein ratio (PPR: 10-1-0.1 U/µg) for pepsin digestion, followed by pancreatin digestion in the presence of bile salts. Digestion was monitored by SDS-PAGE in conjunction with Coomassie staining and immunoblotting using rabbit antisera and human IgE. RESULTS: At pH 4.0 and at PPR 0.1 most proteins, both allergen and non-allergen, were highly resistant to pepsin. Under conditions known to favor pepsin proteolysis, the established major allergens Ara h 2, Pru p 3 and Pen a 1 were highly resistant to proteolysis, while the allergen Cyp c 1 was not. However, this resistance to pepsin digestion only made Ara h 2 and to a lesser extent Pen a 1 and Pru p 3 stand out compared to their non-allergenic counterparts. Largely irrespective of preceding pepsin digestion conditions, pancreatin digestion was very effective for all tested proteins, allergens and non-allergens, except for Cyp c 1 and bovine collagen. CONCLUSIONS: Sub-optimal pH, low pepsin-to protein ratio, and sequential pepsin and pancreatin digestion protocols do not improve the predictive value in distinguish allergens from non-allergens. Digestion conditions facilitating such distinction differ per protein pair.

9.
Front Microbiol ; 8: 2214, 2017.
Article in English | MEDLINE | ID: mdl-29170662

ABSTRACT

To more fully characterize the burden of Salmonella enterica in bovine peripheral lymph nodes (PLN), PLN (n = 5,450) were collected from healthy cattle at slaughter in 12 commercial abattoirs that slaughtered feedlot-fattened (FF) cattle exclusively (n = 7), cattle removed (or culled) from breeding herds (n = 3), or both FF and cull cattle (n = 2). Qualitative and quantitative methods were used to estimate prevalence and concentration of Salmonella in PLN. Isolates were subjected to a variety of phenotypic, serological, and molecular assays. Overall, Salmonella prevalence in PLN from FF and cull cattle was 7.1 and 1.8%. However, burden varied by season in that observed prevalence in PLN collected in cooler or warmer seasons was 2.4 and 8.2%, respectively. Prevalence in PLN from cull cattle in the southwest region of the US was 2.1 and 1.1% for cool and warm seasons, respectively; however, prevalence in FF PLN was far greater in that it was 6.5 and 31.1%, respectively. Salmonella was recovered from 289 (5.6%) PLN and 2.9% (n = 160) of all PLN tested had quantifiable concentrations that varied from 1.6 to 4.9 log10 colony forming units/PLN. The most common serotypes isolated from PLN were Montevideo (26.9%), Lille (14.9%), Cerro (13.0%), Anatum (12.8%), and Dublin (6.9%). In all, 376 unique isolates were collected from the 289 Salmonella-positive PLN. Antimicrobial susceptibility testing revealed the majority (80.6%) of these isolates were pansusceptible; however, 10.7% of isolates were found to be resistant to two or more antimicrobial classes. We were able to document an observed increased in prevalence of Salmonella in PLN during the warmer season, particularly in FF cattle from the southwest region of the US. The mechanisms underlying the observed association between season, region, and production source have yet to be elucidated. Nevertheless, these findings increase our understanding of the sources of contamination of beef products and shed light on transmission dynamics that may be useful in targeting these sources.

10.
Regul Toxicol Pharmacol ; 89: 155-164, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28751263

ABSTRACT

Many insect-protected crops express insecticidal crystal (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt), including both naturally-occurring Cry proteins and chimeric Cry proteins created through biotechnology. The Cry51Aa2 protein is a naturally-occurring Cry protein that was modified to increase its potency and expand its insect activity spectrum through amino acid sequence changes. The improved Cry51Aa2 variant, Cry51Aa2.834_16, and other developmental variants belong to the ETX_MTX2 family of proteins but share a low level of sequence similarity to other members of this family. This similarity is largely localized to the pore-forming and oligomerization protein domains, while sequence divergence is observed within the head domain that confers receptor binding specificity. The intact Cry51Aa2.834_16 protein was heat labile at temperatures ≥55 °C, and was rapidly degraded after exposure to the gastrointestinal protease pepsin. No acute oral toxicity was observed in mice for three protein variants of Cry51Aa2, including Cry51Aa2.834_16, at doses exceeding 1000 mg/kg body weight. The weight-of-evidence therefore supports the conclusion of safety for Cry51Aa2.834_16 and demonstrates that amino acid sequence modifications can be used to substantially increase insecticidal activity of a protein without an increased hazard to mammals.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecta , Pest Control, Biological/methods , Plants, Genetically Modified/metabolism , Amino Acid Sequence , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Mice
11.
J Agric Food Chem ; 65(8): 1740-1749, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28161956

ABSTRACT

Lipid transfer protein (LTP) is the main causative agent for rare food allergic reactions to maize. This paper describes a new, validated ELISA that accurately measures maize LTP concentrations from 0.2 to 6.4 ng/mL. The levels of LTP ranged from 171 to 865 µg/g of grain, a 5.1-fold difference, across a set of 49 samples of maize B73 hybrids derived from the Nested Association Mapping (NAM) founder lines and a diverse collection of landrace accessions from North and South America. A second set of 107 unique samples from 18 commercial hybrids grown over two years across 10 U.S. states showed a comparable range of LTP level (212-751 µg/g of grain). Statistical analysis showed that genetic and environmental factors contributed 63 and 6%, respectively, to the variance in LTP levels. Therefore, the natural variation of maize LTP is up to 5-fold different across a diverse collection of varieties that have a history of safe cultivation and consumption.


Subject(s)
Carrier Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Plant Proteins/analysis , Zea mays/chemistry , Carrier Proteins/genetics , Carrier Proteins/immunology , Plant Proteins/genetics , Plant Proteins/immunology , Zea mays/genetics , Zea mays/immunology
12.
PLoS One ; 12(2): e0171926, 2017.
Article in English | MEDLINE | ID: mdl-28207780

ABSTRACT

The susceptibility of a dietary protein to proteolytic degradation by digestive enzymes, such as gastric pepsin, provides information on the likelihood of systemic exposure to a structurally intact and biologically active macromolecule, thus informing on the safety of proteins for human and animal consumption. Therefore, the purpose of standardized in vitro degradation studies that are performed during protein safety assessments is to distinguish whether proteins of interest are susceptible or resistant to pepsin degradation via a study design that enables study-to-study comparison. Attempting to assess pepsin degradation under a wide-range of possible physiological conditions poses a problem because of the lack of robust and consistent data collected under a large-range of sub-optimal conditions, which undermines the needs to harmonize in vitro degradation conditions. This report systematically compares the effects of pH, incubation time, and pepsin-to-substrate protein ratio on the relative degradation of five dietary proteins: three pepsin susceptible proteins [ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), horseradish peroxidase (HRP), hemoglobin (Hb)], and two pepsin resistant proteins [lipid transfer protein (LTP) and soybean trypsin inhibitor (STI)]. The results indicate that proteins susceptible to pepsin degradation are readily distinguishable from pepsin-resistant proteins when the reaction conditions are within the well-characterized optima for pepsin. The current standardized in vitro pepsin resistant assay with low pH and high pepsin-to-substrate ratio fits this purpose. Using non-optimal pH and/or pepsin-to-substrate protein ratios resulted in susceptible proteins no longer being reliably degraded by this stomach enzyme, which compromises the ability of this in vitro assay to distinguish between resistant and susceptible proteins and, therefore, no longer providing useful data to an overall weight-of-evidence approach to assessing safety of proteins.


Subject(s)
Dietary Proteins/chemistry , Food Safety , Pepsin A/chemistry , Dietary Proteins/immunology , Hydrogen-Ion Concentration , Time Factors
13.
J Invertebr Pathol ; 142: 50-59, 2017 01.
Article in English | MEDLINE | ID: mdl-27235983

ABSTRACT

The need for sustainable insect pest control is driving the investigation and discovery of insecticidal proteins outside of the typical 3-domain Cry protein family from Bacillus thuringiensis (Bt). Examples include Cry35 and Cry51 that belong to protein families (Toxin_10, ETX_MTX2) sharing a common ß-pore forming structure and function with known mammalian toxins such as epsilon toxin (ETX). Although ß-pore forming proteins are related to mammalian toxins, there are key differences in sequence and structure that lead to organism specificity that is useful in the weight-of-evidence approach for safety assessment. Despite low overall amino acid sequence identity among ETX_MTX2 proteins, sequence and structural similarities are found in the tail region responsible for the shared oligomerization and pore formation functions (causing the "relatedness"). Conversely, most of the sequence and structural diversity is located in the head region that is likely responsible for differential receptor binding and target species specificity (e.g., insecticidal vs. mammalian). Therefore, inclusion of a domain-based protein characterization approach that includes bioinformatic and functional comparisons of conserved and diverse domains will enhance the overall weight of evidence safety assessment of proteins including recently reported Cry51 protein variants (Cry51Aa1, Cry51Aa2, and Cry51Aa2.834_16).


Subject(s)
Computational Biology/methods , Endotoxins/classification , Insecticides/classification , Models, Molecular , Pest Control, Biological/methods , Amino Acid Sequence , Animals , Endotoxins/chemistry , Endotoxins/genetics , Insecticides/chemistry , Insecticides/metabolism , Structure-Activity Relationship
14.
J Food Prot ; 79(7): 1135-42, 2016 07.
Article in English | MEDLINE | ID: mdl-27357032

ABSTRACT

Biting arthropods are implicated in the transdermal transmission of Salmonella to bovine peripheral lymph nodes, and such contamination can contribute to increased Salmonella prevalence in processed beef. Since horn flies can acquire Salmonella and then excrete the bacteria in their feces, on-animal fly infestations were conducted in this study to assess whether horn flies have a role in this bacterial transmission. Three Salmonella serotypes were used to assess fly acquisition from and excretion onto cattle. The results indicated that flies can acquire Salmonella from the hide, as assessed by recovery from homogenates of surfacesterilized flies, and that Salmonella persists for at least 5 days in the fly. Fly fecal excreta serves as a bacterial contaminant on the hide, and the overall mean probable estimate of the quantity shed was ≈10(5) most probable number per fly cage area. In 5 days, no transmission of the bacteria to bovine peripheral lymph nodes was evident, prompting an assessment of the effects of prolonged horn fly feeding on transmission. Three groups of animals were infested with flies that had consumed a blood meal containing Salmonella Senftenberg. After 5 days, the study was either terminated or the flies were removed and the cages replenished with unfed flies either once or twice over the course of an 11- or 19-day fly exposure period, respectively. A microlancet-inoculated positive-control animal was included in each group for comparison. The impact of prolonged horn fly feeding was evident, as 8% of lymph nodes cultured were positive from the 5-day exposure, whereas 50 and 42% were positive from 11- and 19-day exposures, respectively. Higher concentrations of Salmonella were recovered from fly-infested animals than from the microlancet-inoculated control, likely a result of repeated inoculations over time by flies versus a single introduction. The data described provide new insights into the transmission dynamics of Salmonella in cattle populations, highlighting a role for biting flies as an important reservoir.


Subject(s)
Muscidae , Salmonella , Animals , Cattle , Feces/microbiology , Lymph Nodes
15.
Foodborne Pathog Dis ; 13(9): 517-25, 2016 09.
Article in English | MEDLINE | ID: mdl-27304488

ABSTRACT

The efficacy of a Salmonella vaccine for reducing fecal shedding of Salmonella during the finishing period and lymph node (LN) carriage at harvest was investigated in commercial feedlot cattle. The study was designed as a pen-level randomized complete block with two treatment groups, a Salmonella Newport siderophore receptor and porin proteins-based vaccine (VAC) and a nonvaccinated control (CON). Cattle were randomly allocated into 24 pens within 12 blocks based on the time of allocation. Twenty to 25 fecal pats were collected from each of the study pen floors once a month from June to August 2013. During harvest, a minimum of 25 sub-iliac LN were collected from carcasses within each study pen. Fecal and pulverized LN samples were cultured for Salmonella quantification and detection. Mixed models were used to analyze the effect of vaccination on fecal shedding and LN carriage of Salmonella. Montevideo and Anatum were the predominant Salmonella serotypes among fecal samples and LNs; no Newport isolates were recovered. Vaccination was not significantly associated (p = 0.57) with the prevalence of Salmonella in feces over time; the mean within-pen prevalence was 62.3% and 66.0% among VAC and CON, respectively. Sampling month was significantly associated (p < 0.01) with fecal prevalence; mean prevalence was 71.4% for June, 48.6% for July, and 70.8% for August. Across all pens, the cumulative prevalence of Salmonella in LN was 86.4%. Vaccination resulted in no significant reduction in LN prevalence (p = 0.52); mean prevalence was 85.7% for VAC and 87.4% for CON groups. Although vaccinated cattle had numerically fewer Salmonella LN and fecal positives, there were no statistically significant vaccine effects. Potential reasons for the lack of vaccine efficacy could include an overwhelming Salmonella exposure, a lack of cross-protection against non-Newport serotypes, and insufficient duration of immunity relative to harvest.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Bacterial Shedding , Cattle Diseases/prevention & control , Receptors, Cell Surface/immunology , Salmonella Infections, Animal/prevention & control , Salmonella Vaccines/immunology , Animals , Animals, Domestic , Cattle , Cattle Diseases/microbiology , Colony Count, Microbial , Feces/microbiology , Lymph Nodes/microbiology , Porins/immunology , Random Allocation , Salmonella/isolation & purification , Texas
16.
Foodborne Pathog Dis ; 13(4): 205-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26954516

ABSTRACT

Dairy cattle are a reservoir of several Salmonella serovars that are leading causes of human salmonellosis. The objectives of this study were to estimate the environmental prevalence of Salmonella on dairy farms in Texas and to characterize the antimicrobial susceptibility of the isolates. Eleven dairy farms throughout Texas were sampled from August through October 2013, using a cross-sectional approach. Samples were collected from four locations within each farm (hospital pen, maternity pen, cow housing area, and calf housing area), and feces were collected from cull cows as available. Environmental and fecal samples were processed for Salmonella, and isolates were tested for susceptibility to 15 antimicrobial agents. Serovar characterization was performed on a subset of these isolates. Salmonella was isolated from 67.0% (236/352) of the environmental samples and 64.2% (43/67) of the cull cow fecal samples. Environmental samples from the maternity pen were significantly more likely to be Salmonella positive than samples from the cow and calf housing areas. Multidrug resistance was evident in 11.9% (27/226) of environmental isolates and 19.5% (8/41) of fecal isolates. Salmonella isolates from the calf housing area and maternity pen were significantly more likely to be multidrug resistant (MDR) than isolates from the cow housing area. The most common serovars found among the MDR isolates were Newport, Muenchen, and Typhimurium. These results help provide a focus for efforts to mitigate the burden of antimicrobial-resistant Salmonella at the preharvest level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle Diseases/microbiology , Dairying , Drug Resistance, Multiple, Bacterial , Salmonella Infections, Animal/microbiology , Salmonella/drug effects , Salmonella/isolation & purification , Animals , Cattle , Cattle Diseases/epidemiology , Cross-Sectional Studies , Environmental Microbiology , Feces/microbiology , Female , Intestinal Mucosa/microbiology , Male , Microbial Sensitivity Tests/veterinary , Microbial Viability/drug effects , Prevalence , Rectum/microbiology , Salmonella/growth & development , Salmonella Infections, Animal/epidemiology , Species Specificity , Texas/epidemiology
17.
Structure ; 23(12): 2234-2245, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26655471

ABSTRACT

OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded ß-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Amino Acid Sequence , Amino Acids/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Conserved Sequence , Molecular Sequence Data , Mutation , Protein Binding , Protein Structure, Tertiary
18.
J Biomol NMR ; 61(3-4): 261-74, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25869397

ABSTRACT

Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Micelles , Nuclear Magnetic Resonance, Biomolecular/methods , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Cloning, Molecular , Lipid Bilayers/chemistry , Models, Molecular , Phospholipids/chemistry , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
19.
Genome Announc ; 3(2)2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25883279

ABSTRACT

Salmonella enterica is principally a foodborne pathogen that shows considerable serovar diversity. In this report, we present two draft genome sequences of Salmonella enterica subsp. enterica serovar Lubbock, a novel serovar.

20.
J Med Entomol ; 51(5): 993-1001, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25276929

ABSTRACT

Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.)) (Diptera: Muscidae), are intriguing candidates for transmitting Salmonella to cattle because they provide a route of entry when they breach the skin barrier during blood feeding. Using a green fluorescent protein-expressing strain of Salmonella Montevideo (S. Montevideo-GFP), the current study demonstrated that horn fly grooming subsequent to tactile exposure to the bacteria resulted in acquisition of the bacteria on mouthparts as well as microbial ingestion. Consumption of a bloodmeal containing approximately 10(2), approximately 10(4), or 10(6) S. Montevideo-GFP resulted in horn fly colonization for up to 72 h postingestion (PI). Epifluorescent microscopy indicated that the bacteria were not localized to the crop but were observed within the endoperitrophic space, suggesting that regurgitation is not a primary route of transmission. S. Montevideo-GFP were cultured from excreta of 100% of flies beginning 6-7 h PI of a medium or high dose meal and > 12 h PI in excreta from 60% of flies fed the low-dose meal. Animal hides and manure pats are sources for horn flies to acquire the Salmonella and mechanically transmit them to an animal while feeding. Mean quantities of 5.65-67.5 x 10(2) CFU per fly were cultured from fly excreta passed within 1 d after feeding, suggesting the excreta can provide an additional microbial source on the animal's hide.


Subject(s)
Muscidae/microbiology , Salmonella enterica/classification , Salmonella enterica/physiology , Animals , Gastrointestinal Tract/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...