Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 80(12): 125105, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20059168

ABSTRACT

We have developed an instrument combining localized surface plasmon resonance (LSPR) sensing with electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D). The two techniques can be run simultaneously, on the same sensor surface, and with the same time resolution and sensitivity as for the individual techniques. The electrodeless QCM eliminates the need to fabricate electrodes on the quartz crystal and gives a large flexibility in choosing the surface structure and coating for both QCM-D and LSPR. The performance is demonstrated for liquid phase measurements of lipid bilayer formation and biorecognition events, and for gas phase measurements of hydrogen uptake/release by palladium nanoparticles. Advantages of using the combined equipment for biomolecular adsorption studies include synchronized information about structural transformations and extraction of molecular (dry) mass and degree of hydration of the adlayer, which cannot be obtained with the individual techniques. In hydrogen storage studies the combined equipment, allows for synchronized measurements of uptake/release kinetics and quantification of stored hydrogen amounts in nanoparticles and films at practically interesting hydrogen pressures and temperatures.


Subject(s)
Nanotechnology/instrumentation , Quartz , Surface Plasmon Resonance/instrumentation , Algorithms , Biotinylation , Hydrogen/chemistry , Lipid Bilayers/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Optics and Photonics/instrumentation , Palladium/chemistry , Pressure , Recombinant Proteins/chemistry , Sensitivity and Specificity , Streptavidin/chemistry , Streptomyces , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...