Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 82(1): 105-118, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34919163

ABSTRACT

This is the first investigation of the bioavailability of PCBs associated with paint chips (PC) dispersed in sediment. Bioavailability of PCB-containing PC in sediment was measured using ex situ polyethylene passive samplers (PS) and compared to that of PCBs from field-collected sediments. PC were mixed in freshwater sediment from a relatively uncontaminated site with no known PCB contamination sources and from a contaminated site with non-paint PCB sources. PC < 0.045 mm generated concentrations in the PS over one order of magnitude higher than coarser chips. The bioavailable fraction was represented by the polymer-sediment accumulation factor (PSAF), defined as the ratio of the PCB concentrations in the PS and organic carbon normalized sediment. The PSAF was similar for both field sediments. The PSAFs for the field sediments were ~ 50-60 and ~ 5 times higher than for the relatively uncontaminated sediment amended with PC for the size fractions 0.25-0.3 mm and < 0.045 mm, respectively. These results indicate much lower bioavailability for PCBs associated with PC compared to PCBs associated with field-collected sediment. Such information is essential for risk assessment and remediation decision-making for sites where contamination from non-paint PCBs sources is co-located with PCB PC.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Aroclors , Biological Availability , Environmental Monitoring , Geologic Sediments , Paint , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
2.
Arch Environ Contam Toxicol ; 81(2): 324-334, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34196742

ABSTRACT

Polychlorinated biphenyls (PCBs) were added to certain marine vessel bottom paints as a plasticizer to improve the adhesion and durability of the paint. The most common PCB formulation used to amend such paints was Aroclor 1254. Fugitive Aroclor-containing paint chips generated from vessel maintenance and repair operations represent a potential source of PCB contamination to sediments. Limited published studies indicate that Aroclor-containing paint is largely inert and exhibits low PCB leaching into water; however, the rate and degree of leaching of PCBs from paint chips have not been directly studied. This laboratory-based study evaluated the rate and extent of leaching of PCBs from paint chips into freshwater. The results of this investigation demonstrate that the rate of PCB dissolution from paint chips decreased rapidly and exponentially over time. Based on this study, it is estimated that the rate of leaching of PCBs from paint chips would cease after approximately 3 years of exposure to water. When all leachable PCBs were exhausted, it is estimated that less than 1% of the mass of PCBs in the paint chips was amenable to dissolution. The results of this experiment suggest that Aroclor-containing paint chips found in sediments are likely short-term sources of dissolved-phase PCB to pore or surface waters and that the majority of the PCBs in paint chips remain in the paint matrix and unavailable for partitioning into water.


Subject(s)
Polychlorinated Biphenyls , Aroclors , Paint , Polychlorinated Biphenyls/analysis
3.
Integr Environ Assess Manag ; 14(1): 22-31, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29068521

ABSTRACT

This analysis focused on evaluating the environmental consequences of remediation, providing indicators for the environmental quality pillar of 3 "pillars" of the Portland Harbor Sustainability Project (PHSP) framework (the other 2 pillars are economic viability and social equity). The project an environmental impact and benefit analysis (EIBA) and an EIBA-based cost-benefit analysis. Metrics developed in the EIBA were used to quantify and compare remedial alternatives' environmental benefits and impacts in the human and ecological domains, as a result of remedial actions (relative to no action). The cost-benefit results were used to evaluate whether remediation costs were proportionate or disproportionate to the environmental benefits. Alternatives B and D had the highest overall benefit scores, and Alternative F was disproportionately costly relative to its achieved benefits when compared to the other remedial alternatives. Indeed, the costlier alternatives with larger remedial footprints had lower overall EIBA benefit scores-because of substantially more air emissions, noise, and light impacts, and more disturbance to business, recreational access, and habitat during construction-compared to the less costly and smaller alternatives. Put another way, the adverse effects during construction tended to outweigh the long-term benefits, and the net environmental impacts of the larger remedial alternatives far outweighed their small incremental improvements in risk reduction. Results of this Comprehensive Environmental Response Compensation and Liability Act (CERCLA)-linked environmental analysis were integrated with indicators of economic and social impacts of remediation in a stakeholder values-based sustainability framework. These tools (EIBA, EIBA-based cost-benefit analysis, economic impact assessment, and the stakeholder values-based integration) provide transparent and quantitative evaluations of the benefits and impacts associated with remedial alternatives, and should be applied to complex remediation projects to aid environmental decision making. Integr Environ Assess Manag 2018;14:22-31. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Restoration and Remediation/methods , Hazardous Waste Sites , Cost-Benefit Analysis , Decision Making , Ecosystem , Environment , Oregon , Risk Assessment/methods
4.
Integr Environ Assess Manag ; 14(1): 32-42, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29057621

ABSTRACT

The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Cost-Benefit Analysis/methods , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical , Environmental Restoration and Remediation/economics , Hazardous Waste , Oregon
5.
Integr Environ Assess Manag ; 14(1): 63-78, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29105341

ABSTRACT

A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10-4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10-5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision making. Integr Environ Assess Manag 2018;14:63-78. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Restoration and Remediation , Oregon , Polychlorinated Biphenyls/analysis , Probability , Refuse Disposal , Risk Assessment/methods , Water Pollutants, Chemical/analysis
6.
Integr Environ Assess Manag ; 14(1): 17-21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29087619

ABSTRACT

This article introduces the Portland Harbor Superfund Site Sustainability Project (PHSP) special series in this issue. The Portland Harbor Superfund Site is one of the "mega-sediment sites" in the United States, comprising about 10 miles of the Lower Willamette River, running through the heart of Portland, Oregon. The primary aim of the PHSP was to conduct a comprehensive sustainability assessment, integrating environmental, economic, and social considerations of a selection of the remedial alternatives laid out by the US Environmental Protection Agency. A range of tools were developed for this project to quantitatively address environmental, economic, and social costs and benefits based upon diverse stakeholder values. In parallel, a probabilistic risk assessment was carried out to evaluate the risk assumptions at the core of the remedial investigation and feasibility study process. Integr Environ Assess Manag 2018;14:17-21. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Hazardous Waste Sites , Hazardous Substances , Oregon , Refuse Disposal , Water Pollutants, Chemical/analysis
7.
Integr Environ Assess Manag ; 14(1): 43-62, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29058827

ABSTRACT

Regulatory decisions on remediation should consider affected communities' needs and values, and how these might be impacted by remedial options; this process requires that diverse stakeholders are able to engage in a transparent consideration of value trade-offs and of the distribution of risks and benefits associated with remedial actions and outcomes. The Stakeholder Values Assessment (SVA) tool was developed to evaluate remedial impacts on environmental quality, economic viability, and social equity in the context of stakeholder values and priorities. Stakeholder values were linked to the pillars of sustainability and also to a range of metrics to evaluate how sediment remediation affects these values. Sediment remedial alternatives proposed by the US Environmental Protection Agency (USEPA) for the Portland Harbor Superfund Site were scored for each metric, based upon data provided in published feasibility study (FS) documents. Metric scores were aggregated to generate scores for each value; these were then aggregated to generate scores for each pillar of sustainability. In parallel, the inferred priorities (in terms of regional remediation, restoration, planning, and development) of diverse stakeholder groups (SGs) were used to evaluate the sensitivity and robustness of the values-based sustainability assessment to diverse SG priorities. This approach, which addresses social indicators of impact and then integrates them with indicators of environmental and economic impacts, goes well beyond the Comprehensive Environmental Response, Compensation and Liability Act's (CERCLA) 9 criteria for evaluating remedial alternatives because it evaluates how remedial alternatives might be ranked in terms of the diverse values and priorities of stakeholders. This approach identified trade-offs and points of potential contention, providing a systematic, semiquantitative, transparent valuation tool that can be used in community engagement. Integr Environ Assess Manag 2018;14:43-62. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Restoration and Remediation/methods , Geologic Sediments , Hazardous Substances , Oregon , Refuse Disposal , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...