Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
New Phytol ; 233(3): 1440-1455, 2022 02.
Article in English | MEDLINE | ID: mdl-34806774

ABSTRACT

The earliest evidence for land plants comes from dispersed cryptospores from the Ordovician, which dominated assemblages for 60 million years. Direct evidence of their parent plants comes from minute fossils in Welsh Borderland Upper Silurian to Lower Devonian rocks. We recognize a group that had forking, striated axes with rare stomata terminating in valvate sporangia containing permanent cryptospores, but their anatomy was unknown especially regarding conducting tissues. Charcoalified fossils extracted from the rock using HF were selected from macerates and observed using scanning electron microscopy. Promising examples were split for further examination and compared with electron micrographs of the anatomy of extant bryophytes. Fertile fossil axes possess central elongate cells with thick walls bearing globules, occasional strands and plasmodesmata-sized pores. The anatomy of these cells best matches desiccation-tolerant food-conducting cells (leptoids) of bryophytes. Together with thick-walled epidermal cells and extremely small size, these features suggest that these plants were poikilohydric. Our new data on conducting cells confirms a combination of characters that distinguish the permanent cryptospore-producers from bryophytes and tracheophytes. We therefore propose the erection of a new group, here named the Eophytidae (eophytes).


Subject(s)
Biological Evolution , Embryophyta , Fossils , Microscopy, Electron, Scanning , Plants/anatomy & histology
2.
New Phytol ; 233(3): 1456-1465, 2022 02.
Article in English | MEDLINE | ID: mdl-34806776

ABSTRACT

Key sources of information on the nature of early terrestrial ecosystems are the fossilized remains of plants and associated organic encrustations, which are interpreted as either biofilms, biological soil crusts or lichens. The hypothesis that some of these encrustations might be the remains of the thalloid gametophytes of embryophytes provided the stimulus for this investigation. Fossils preserved in charcoal were extracted from Devonian Period (Lochkovian Stage, c. 410-419 Myr old) sediments at a geological site in Shropshire (UK). Scanning electron micrographs (SEMs) of the fossils were compared with new and published SEMs of extant bryophytes and tracheophytes, respectively. One specimen was further prepared and imaged by transmission electron microscopy. Fossils of thalloid morphology were composed almost entirely of cells with labyrinthine ingrowths; these also were present in fossils of axial morphology where they were associated with putative food-conducting cells. Comparison with modern embryophytes demonstrates that these distinctive cells are transfer cells (TCs). Our fossils provide by far the earliest geological evidence of TCs. They also show that some organic encrustations are the remains of thalloid land plants and that these are possibly part of the life cycle of a newly recognized group of plants called the eophytes.


Subject(s)
Biological Evolution , Embryophyta , Ecosystem , Fossils , Plants
3.
Geobiology ; 17(4): 360-380, 2019 07.
Article in English | MEDLINE | ID: mdl-30734481

ABSTRACT

The ca. 1.38 billion years (Ga) old Roper Group of the McArthur Basin, northern Australia, is one of the most extensive Proterozoic hydrocarbon-bearing units. Organic-rich black siltstones from the Velkerri Formation were deposited in a deep-water sequence and were analysed to determine their organic geochemical (biomarker) signatures, which were used to interpret the microbial diversity and palaeoenvironment of the Roper Seaway. The indigenous hydrocarbon biomarker assemblages describe a water column dominated by bacteria with large-scale heterotrophic reworking of the organic matter in the water column or bottom sediment. Possible evidence for microbial reworking includes a large unresolved complex mixture (UCM), high ratios of mid-chained and terminally branched monomethyl alkanes relative to n-alkanes-features characteristic of indigenous Proterozoic bitumen. Steranes, biomarkers for single-celled and multicellular eukaryotes, were below detection limits in all extracts analysed, despite eukaryotic microfossils having been previously identified in the Roper Group, albeit largely in organically lean shallower water facies. These data suggest that eukaryotes, while present in the Roper Seaway, were ecologically restricted and contributed little to export production. The 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (TMAI) were absent or in very low concentration in the Velkerri Formation. The low abundance is primary and not caused by thermal destruction. The combination of increased dibenzothiophene in the Amungee Member of the Velkerri Formation and trace metal redox geochemistry suggests that degradation of carotenoids occurred during intermittent oxygen exposure at the sediment-water interface and/or the water column was rarely euxinic in the photic zone and likely only transiently euxinic at depth. A comparison of this work with recently published biomarker and trace elemental studies from other mid-Proterozoic basins demonstrates that microbial environments, water column geochemistry and basin redox were heterogeneous.


Subject(s)
Environment , Geologic Sediments/microbiology , Hydrocarbons/analysis , Microbiota , Environmental Biomarkers , Fossils , Geologic Sediments/analysis , Northern Territory
5.
Curr Biol ; 28(5): 733-745.e2, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29456145

ABSTRACT

The evolutionary emergence of land plant body plans transformed the planet. However, our understanding of this formative episode is mired in the uncertainty associated with the phylogenetic relationships among bryophytes (hornworts, liverworts, and mosses) and tracheophytes (vascular plants). Here we attempt to clarify this problem by analyzing a large transcriptomic dataset with models that allow for compositional heterogeneity between sites. Zygnematophyceae is resolved as sister to land plants, but we obtain several distinct relationships between bryophytes and tracheophytes. Concatenated sequence analyses that can explicitly accommodate site-specific compositional heterogeneity give more support for a mosses-liverworts clade, "Setaphyta," as the sister to all other land plants, and weak support for hornworts as the sister to all other land plants. Bryophyte monophyly is supported by gene concatenation analyses using models explicitly accommodating lineage-specific compositional heterogeneity and analyses of gene trees. Both maximum-likelihood analyses that compare the fit of each gene tree to proposed species trees and Bayesian supertree estimation based on gene trees support bryophyte monophyly. Of the 15 distinct rooted relationships for embryophytes, we reject all but three hypotheses, which differ only in the position of hornworts. Our results imply that the ancestral embryophyte was more complex than has been envisaged based on topologies recognizing liverworts as the sister lineage to all other embryophytes. This requires many phenotypic character losses and transformations in the liverwort lineage, diminishes inconsistency between phylogeny and the fossil record, and prompts re-evaluation of the phylogenetic affinity of early land plant fossils, the majority of which are considered stem tracheophytes.


Subject(s)
Biological Evolution , Embryophyta/anatomy & histology , Embryophyta/genetics , Phylogeny
6.
Proc Natl Acad Sci U S A ; 115(10): E2274-E2283, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463716

ABSTRACT

Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.


Subject(s)
Biological Evolution , Plants/genetics , Biodiversity , Ecosystem , Fossils/history , History, Ancient , Phylogeny , Plants/classification , Time Factors
7.
Philos Trans R Soc Lond B Biol Sci ; 373(1739)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29254954

ABSTRACT

The Rhynie cherts Unit is a 407 million-year old geological site in Scotland that preserves the most ancient known land plant ecosystem, including associated animals, fungi, algae and bacteria. The quality of preservation is astonishing, and the initial description of several plants 100 years ago had a huge impact on botany. Subsequent discoveries provided unparalleled insights into early life on land. These include the earliest records of plant life cycles and fungal symbioses, the nature of soil microorganisms and the diversity of arthropods. Today the Rhynie chert (here including the Rhynie and Windyfield cherts) takes on new relevance, especially in relation to advances in the fields of developmental genetics and Earth systems science. New methods and analytical techniques also contribute to a better understanding of the environment and its organisms. Key discoveries are reviewed, focusing on the geology of the site, the organisms and the palaeoenvironments. The plants and their symbionts are of particular relevance to understanding the early evolution of the plant life cycle and the origins of fundamental organs and tissue systems. The Rhynie chert provides remarkable insights into the structure and interactions of early terrestrial communities, and it has a significant role to play in developing our understanding of their broader impact on Earth systems.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.


Subject(s)
Biological Evolution , Ecosystem , Embryophyta , Fossils , Geology , Paleontology , Scotland
8.
Philos Trans R Soc Lond B Biol Sci ; 373(1739)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29254969

ABSTRACT

The affinities of Prototaxites have been debated ever since its fossils, some attaining tree-trunk proportions, were discovered in Canadian Lower Devonian rocks in 1859. Putative assignations include conifers, red and brown algae, liverworts and fungi (some lichenised). Detailed anatomical investigation led to the reconstruction of the type species, P. logani, as a giant sporophore (basidioma) of an agaricomycete (= holobasidiomycete), but evidence for its reproduction remained elusive. Tissues associated with P. taiti in the Rhynie chert plus charcoalified fragments from southern Britain are investigated here to describe the reproductive characters and hence affinities of Prototaxites Thin sections and peels (Pragian Rhynie chert, Aberdeenshire) were examined using light and confocal microscopy; Prídolí and Lochkovian charcoalified samples (Welsh Borderland) were liberated from the rock and examined with scanning electron microscopy. Prototaxites taiti possessed a superficial hymenium comprising an epihymenial layer, delicate septate paraphyses, inoperculate polysporic asci lacking croziers and a subhymenial layer composed predominantly of thin-walled hyphae and occasional larger hyphae. Prototaxites taiti combines features of extant Taphrinomycotina (Neolectomycetes lacking croziers) and Pezizomycotina (epihymenial layer secreted by paraphyses) but is not an ancestor of the latter. Brief consideration is given to its nutrition and potential position in the phylogeny of the Ascomycota.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.


Subject(s)
Ascomycota/classification , Fossils/anatomy & histology , Ascomycota/cytology , Ascomycota/physiology , Phylogeny , Reproduction , Scotland , Wales
9.
Article in English | MEDLINE | ID: mdl-29254973
10.
PLoS One ; 11(11): e0163549, 2016.
Article in English | MEDLINE | ID: mdl-27851760

ABSTRACT

Descriptions of Lower Devonian plants from Yunnan, South China, have revolutionized concepts of diversity and disparity in tracheophytes soon after they became established on land. Sichuan assemblages have received little attention since their discovery almost 25 years ago and require revision. With this objective, fieldwork involving detailed logging and collection of fossils was undertaken in the Longmenshan Mountain Region, Jiangyou County and yielded the two new taxa described here. They are preserved as coalified compressions and impressions that allowed morphological but not anatomical analyses. Yanmenia (Zosterophyllum) longa comb nov is based on numerous rarely branching shoots with enations resembling lycophyte microphylls, without evidence for vasculature. The presence of sporangia is equivocal making assignation to the Lycopsida conjectural. The plant was recently described as a zosterophyll, but lacks strobili. These are present in the second plant and comprise bivalved sporangia. The strobili terminate aerial stems which arise from a basal axial complex displaying diversity in branching including H- and K- forms. These features characterise the Zosterophyllopsida, although the plant differs from Zosterophyllum in valve shape. Comparisons indicate greatest similarities to the Lower Devonian Guangnania cuneata, from Yunnan, but differences, particularly in the nature of the sporangium border, require the erection of a new species, G. minor. Superficial examination of specimens already published indicate a high degree of endemism at both species and generic level, while this study shows that Yanmenia is confined to Sichuan and Guangnania is one of the very few genera shared with Yunnan, where assemblages also show a high proportion of further endemic genera. Such provincialism noted in the Chinese Lower Devonian is explained by the palaeogeographic isolation of the South China plate, but this cannot account for differences/endemism between the Sichuan and Yunnan floras. Such an enigma demands further integrated geological, palaeobotanical and palynological studies.


Subject(s)
Fossils , Plants/classification , Botany , China , Geography , Paleontology , Species Specificity , Terminology as Topic , Time Factors
11.
Philos Trans R Soc Lond B Biol Sci ; 370(1666)2015 Apr 19.
Article in English | MEDLINE | ID: mdl-25750238

ABSTRACT

During the 1920s, the botanist W. H. Lang set out to collect and investigate some very unpromising fossils of uncertain affinity, which predated the known geological record of life on land. His discoveries led to a landmark publication in 1937, 'On the plant-remains from the Downtonian of England and Wales', in which he revealed a diversity of small fossil organisms of great simplicity that shed light on the nature of the earliest known land plants. These and subsequent discoveries have taken on new relevance as botanists seek to understand the plant genome and the early evolution of fundamental organ systems. Also, our developing knowledge of the composition of early land-based ecosystems and the interactions among their various components is contributing to our understanding of how life on land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm is one of early life on land dominated by microbes, small bryophyte-like organisms and lichens. Collectively called cryptogamic covers, these are comparable with those that dominate certain ecosystems today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.


Subject(s)
Biological Evolution , Botany/history , Embryophyta/anatomy & histology , Embryophyta/genetics , Fossils , England , Genomics/methods , History, 20th Century , Wales
12.
New Phytol ; 202(1): 50-78, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24410730

ABSTRACT

Cryptospores, recovered from Ordovician through Devonian rocks, differ from trilete spores in possessing distinctive configurations (i.e. hilate monads, dyads, and permanent tetrads). Their affinities are contentious, but knowledge of their relationships is essential to understanding the nature of the earliest land flora. This review brings together evidence about the source plants, mostly obtained from spores extracted from minute, fragmented, yet exceptionally anatomically preserved fossils. We coin the term 'cryptophytes' for plants that produced the cryptospores and show them to have been simple terrestrial organisms of short stature (i.e. millimetres high). Two lineages are currently recognized. Partitatheca shows a combination of characters (e.g. spo-rophyte bifurcation, stomata, and dyads) unknown in plants today. Lenticulatheca encompasses discoidal sporangia containing monads formed from dyads with ultrastructure closer to that of higher plants, as exemplified by Cooksonia. Other emerging groupings are less well characterized, and their precise affinities to living clades remain unclear. Some may be stem group embryophytes or tracheophytes. Others are more closely related to the bryophytes, but they are not bryophytes as defined by extant representatives. Cryptophytes encompass a pool of diversity from which modern bryophytes and vascular plants emerged, but were competitively replaced by early tracheophytes. Sporogenesis always produced either dyads or tetrads, indicating strict genetic control. The long-held consensus that tetrads were the archetypal condition in land plants is challenged.


Subject(s)
Biodiversity , Cryptophyta/physiology , Spores/physiology , Biological Evolution , Cell Wall/metabolism , Cryptophyta/cytology , Cryptophyta/ultrastructure , Meiosis , Spores/cytology , Spores/ultrastructure
13.
Fungal Biol ; 117(7-8): 512-8, 2013.
Article in English | MEDLINE | ID: mdl-23931116

ABSTRACT

The charcoalified fragment of the dorsiventrally organized, internally stratified presumed green algal lichen Chlorolichenomycites salopensis from the Lower Devonian Lochkovian strata in the Welsh Borderland carries bacterial colonies on the upper surface, i.e. the cortex, and actinobacterial filaments in the medulla underneath the photobiont layer. Moreover relatively thin hyphae of presumed endolichenic fungi were found. As in extant lichens, which are best regarded as consortia with an unknown number of participants, this internally stratified, fossil thallus fragment of a presumed green algal lichen harbours a diverse microbial community.


Subject(s)
Actinobacteria/isolation & purification , Chlorophyta/microbiology , Fungi/isolation & purification , Lichens/microbiology , Actinobacteria/physiology , Actinobacteria/ultrastructure , Biodiversity , Chlorophyta/physiology , Chlorophyta/ultrastructure , Fossils , Fungi/physiology , Fungi/ultrastructure , Lichens/physiology , Lichens/ultrastructure , Symbiosis
14.
New Phytol ; 197(1): 264-275, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23110612

ABSTRACT

Lichenization is assumed to be a very ancient mode of fungal nutrition, but fossil records are rare. Here we describe two fragments of exceptionally preserved, probably charred, lichen thalli with internal stratification. Cyanolichenomycites devonicus has a cyanobacterial and Chlorolichenomycites salopensis a unicellular, presumably green algal photobiont. Fruiting bodies are missing. Cyanolichenomycites devonicus forms asexual spores in a pycnidium. All specimens were examined with scanning electron microscopy techniques. The fossils were extracted by maceration. Extant lichens and free-living cyanobacteria were either experimentally charcoalified for comparison or conventionally prepared. Based on their septate hyphal structure, both specimens are tentatively interpreted as representatives of the Pezizomycotina (Ascomycota). Their presence in 415 million yr (Myr) old rocks from the Welsh Borderland predates existing Late Cretaceous records of pycnidial conidiomata by some 325 Myr and Triassic records of lichens with broadly similar organization by some 195 Myr. These fossils represent the oldest known record of lichens with symbionts and anatomy as typically found in morphologically advanced taxa today. The latter does not apply to Winfrenatia reticulata, the enigmatic crustose lichen fossil from the Lower Devonian, nor to presumed lichen-like organisms such as the Cambrian Farghera robusta or to the Lower Devonian Spongiophyton minutissimum.


Subject(s)
Ascomycota/classification , Cyanobacteria/classification , Lichens/classification , Spores, Fungal/ultrastructure , Ascomycota/cytology , Biological Evolution , Cell Wall/ultrastructure , Chlorophyta/classification , Chlorophyta/cytology , Cyanobacteria/cytology , Fossils , Hyphae/ultrastructure , Lichens/cytology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phylogeny , Species Specificity , Symbiosis , Wales
15.
Am J Bot ; 98(4): 680-97, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21613167

ABSTRACT

PREMISE OF THE STUDY: Dated molecular phylogenies suggest a Cenozoic origin for the crown group of Equisetum. but compression fossil equisetaleans that are morphologically indistinguishable from extant Equisetum and recently discovered anatomically preserved examples strongly suggest an earlier Mesozoic initial diversification. METHODS: In situ samples of Equisetum thermale sp. nov. from the Upper Jurassic San Agustín hot spring deposit were collected and studied with the use of polished blocks, thin sections, and light microscopy. KEY RESULTS: Equisetum thermale exhibits all the morphological and anatomical characteristics of the extant crown group Equisetum. It shows a mixture of features present in the two extant subgenera, e.g., superficial stomata typical of subgenus Equisetum allied with infrequently ramifying stems typical of subgenus Hippochaete. This appears to ally E. thermale with the least derived extant species in the genus Equisetum bogotense (sister species to the two subgenera). Its association of hydromorphic and xeromorphic characters allowed it to grow as an emergent aquatic in physically and chemically stressed geothermally influenced wetlands, where it formed dense monospecific stands. Equisetum thermale, because it is preserved in situ with intact anatomy, provides clear paleoecological, biological, plus inferred paleoecophysiological evidence of adaptations known in extant species. CONCLUSIONS: As the earliest unequivocal member of the genus, E. thermale supports the hypothesis of a Mesozoic origin. Its inferred tolerance of a similar range of stresses (e.g., high salinity, alkalinity, and heavy metal concentrations) to that seen in extant Equisetum suggests early evolution and subsequent maintenance of ecophysiological innovations in the genus.


Subject(s)
Biological Evolution , Equisetum/genetics , Fossils , Phenotype , Phylogeny , Equisetum/anatomy & histology , Equisetum/classification , Hot Springs , South America , Species Specificity , Stress, Physiological
16.
J Clin Hypertens (Greenwich) ; 2(3): 181-186, 2000 May.
Article in English | MEDLINE | ID: mdl-11416644

ABSTRACT

An 8-week, multicenter, open-label, clinical experience trial evaluated the efficacy of candesartan cilexetil either alone (34%) or as add-on therapy (66%) in 1014 patients with untreated or uncontrolled isolated systolic hypertension defined as systolic blood pressure 140-179 mm Hg/diastolic less than 90 mm Hg. Candesartan cilexetil 16 mg once daily was given initially and was up-titrated to 32 mg once daily at week 2 or week 4 if systolic blood pressure remained at or above 140 mm Hg. Overall, candesartan cilexetil reduced both blood pressures by 16.5Â+/-0.6/4.5Â+/-0.2 mm Hg from 158Â+/-0.4/81Â+/-0.2 to 142Â+/-0.6/76Â+/-9.6 mm Hg with a control rate (systolic blood pressure less than 140 mm Hg) of 49%. Of the 492 (51%) patients remaining on the lower dose of candesartan cilexetil (40% as monotherapy; 60% as add-on), candesartan cilexetil 16 mg reduced blood pressure by 19.7Â+/-1.0/5.5Â+/-0.3 mm Hg and 62% of patients were controlled. For the 475 (49%) patients uncontrolled on candesartan cilexetil 16 mg and titrated to 32 mg (30% as monotherapy, 70% as add-on), the dose increase further reduced blood pressure by 8.9Â+/-0.4/3.8Â+/-0.1 mm Hg at week 8, and 36% of patients not responsive to the lower dose achieved blood pressure control on the higher dose. This dose response from candesartan cilexetil 16 mg to 32 mg was seen across age, sex, and race. Overall, tolerability was well maintained. Most adverse events were relatively infrequent, and only 8% withdrew due to adverse events; the most frequent adverse effects were dizziness (7%), headache (6%), and upper respiratory tract infection (5%). In conclusion, in this clinical experience trial for patients with isolated systolic hypertension, candesartan cilexetil 16 mg to 32 mg once daily produced a dose-related decrease in systolic blood pressure with a lesser decrease in diastolic blood pressure, resulting in a substantial decrease in pulse pressure. The dose response without dose dependent adverse effects was consistent across age, sex, and race, demonstrating that candesartan cilexetil is a therapeutic option for patients with isolated systolic hypertension. (c)2000 by Le Jacq Communications, Inc.

17.
New Phytol ; 125(2): 225-247, 1993 Oct.
Article in English | MEDLINE | ID: mdl-33874492

ABSTRACT

Remarkable preservation in coalified and pennineralized fossils from Upper Silurian and Lower Devonian sediments deposited some 420 to 390 million years ago provides insight into the major anatomical innovations associated with the early stages in the colonization of the land by higher plants. Using uniformitarian principles, such information, combined with gross morphology, can then be used to reconstruct the pioneers as growing, metabolizing and reproducing organisms, as well as allowing assessment of affinity, although apart from the lycophytes, they have no close relationship with extant groups. In considering vascular tissues, diversity is exemplified by descriptions of the metaxylem in protosteles of Zosterophyllopsida and Drepanophycopsida (putative lycophytes), of Psilophyton (Trimerophytopsida), of the Rhyniaceae (including Rhynia gwynnevaughanii, certain Taeniocrada spp., Sennicaulis) and of Cooksonia pertoni, a Lower Devonian representative of the organization found in the oldest pteridophyte-like land plants. Aglaophyton major is included as a plant with bryophyte-like vascular tissues in a branching sporophyte with cuticle, stomata and intercellular space system typical of the homoiohydric tracheophyte. In all water-conducting cells, interpretation of the primary and secondary wall results from comparisons involving the anatomy and chemistry of extant examples and an understanding of taphonomic processes. Phloem is only rarely preserved and usually identified from its position around the xylem. In contrast, dermal features are better known, because of penetration of the resilient cuticle between epidermal cells. They appear conservative. Thus stomata with two guard cells look remarkably similar to extant forms in surface view, and by consideration of their relationship with surrounding epidermal cells and of extent of cuticularization, seem to have operated in a similar way to those in certain mosses and ferns. Cuticular ornamentation (papillae, striations) and epidermal outgrowths (unicellular and multicellular) are described and their adaptive significance conjectured. Ground tissue systems are best preserved in Rhynie Chert permineralizations where zonation of the cortex is tentatively related to photosynthetic and structural roles. The latter function is also attributed to thick-walled, outer cortical cells recorded in many zosterophylls and in Psilophyton, although the chemical nature of the walls themselves remains equivocal. Problems of identification of roots in plants possessing axial organization with exarch xylem, and in leafy plants with smooth lateral branching systems are briefly addressed. Finally axis apices in Rhynia givynne-vaughanii and sections showing stages in the maturation of Asteroxylon stems are described from the Rhynie Chert. Contents Summary 225 I. Introduction 226 II. Vascular systems 226 III. Dermal systems 237 IV. Ground tissue systems 241 V. Apical meristems 244 VI. Distinction of aerial stems, rhizomes and roots 245 VII. Why anatomy? 245 Acknowledgements 245 References 245.

SELECTION OF CITATIONS
SEARCH DETAIL
...